Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/56559
Title: Спектральні характеристики наноструктур типу ядро-оболонка в умовах плазмонного резонансу
Other Titles: Spectral characteristics of the core-shell type nanostructures under plasmon resonance conditions
Authors: Булавінець, Т. О.
Яремчук, І. Я.
Бобицький, Я. В.
Bulavinets, T. O.
Yaremchuk, I. Ya.
Bobitski, Ya. V.
Affiliation: Національний університет “Львівська політехніка”
Lviv Polytechnic National University
Bibliographic description (Ukraine): Булавінець Т. О. Спектральні характеристики наноструктур типу ядро-оболонка в умовах плазмонного резонансу / Т. О. Булавінець, І. Я. Яремчук, Я. В. Бобицький // Вісник Національного університету “Львівська політехніка”. Серія: Радіоелектроніка та телекомунікації. — Львів : Видавництво Львівської політехніки, 2020. — № 915. — С. 78–85.
Bibliographic description (International): Bulavinets T. O. Spectral characteristics of the core-shell type nanostructures under plasmon resonance conditions / T. O. Bulavinets, I. Ya. Yaremchuk, Ya. V. Bobitski // Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Serie: Radioelektronika ta telekomunikatsii. — Lviv : Lviv Politechnic Publishing House, 2020. — No 915. — P. 78–85.
Is part of: Вісник Національного університету “Львівська політехніка”. Серія: Радіоелектроніка та телекомунікації, 915, 2020
Journal/Collection: Вісник Національного університету “Львівська політехніка”. Серія: Радіоелектроніка та телекомунікації
Issue: 915
Issue Date: 20-Feb-2020
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
UDC: 535.341
Keywords: наночастинка
нанооболонка
плазмонний резонанс
переріз поглинання
переріз розсіювання
nanoparticle
nanoshell
plasmon resonance
absorption cross-section
scattering cross-section
Number of pages: 8
Page range: 78-85
Start page: 78
End page: 85
Abstract: Здійснено моделювання спектральних характеристик наноструктур типу ядро – оболонка, а саме срібло – золото, срібло – мідь, срібло – діоксид титану та діоксид титану – срібло в умовах локалізованого поверхневого плазмонного резонансу. Показано, що зміною товщини оболонки на металевому чи напівпровідниковому ядрі можна керувати спектральним положенням піка поверхневого плазмонного поглинання у видимій області спектра та оцінено вплив геометричної деформації наноструктур на їхні оптичні характеристики.
In this paper, the spectral characteristics of the core-shell type nanostructures, namely silver – silver, silver – copper, silver – titanium dioxide and titanium dioxide – silver in the conditions of localized plasmon resonance have been theoretically researched for the purpose of their further photonics and plasmonics applications. It is shown that by changing the thickness of the shell on the metal or semiconductor core, one can shift the spectral position of the surface plasmon absorption peak in the visible spectral region and evaluate the influence of deformation of nanostructures on their optical characteristics. It is shown that in the case of bimetallic structures, the spectral position of the absorption and scattering cross sections peaks is not sensitive to changes in the thickness of the shell, only their amplitude changes. In the case of nanostructures such as silver-titanium dioxide there is a clearly pronounced additional peak in the spectra of absorption and scattering cross sections. Such a two-band nature can be explained by the excitation of localized plasmons on two interfaces titanium dioxide/silver and silver/environments. The spectral position of the both peaks of absorption and scattering cross sections is shifted to the long-wave region of the spectrum, when the shell thickness changes and when the nanostructure is deformed (extended) for such type of the nanoshells. The structure of titanium dioxide – silver is characterized by a shift of the second peak into the short-wave region of the spectrum when shell thickness increases and when there are deformations. And the first one is practically not sensitive to such changes. It should be noted that with a certain shell thickness, such structure will have characteristics similar to those of a silver nanoparticle.
URI: https://ena.lpnu.ua/handle/ntb/56559
Copyright owner: © Національний університет “Львівська політехніка”, 2020
© Булавінець Т. О., Яремчук І. Я., Бобицький Я. В., 2020
References (Ukraine): 1. Maier S. A. Plasmonics: fundamentals and applications. Springer Science & Business Media, 2007.
2. Климов В. В. Наноплазмоника. Физматлит, 2010.
3. Barnes W. L., Dereux A., Ebbesen T. W. Surface plasmon subwavelength optics. Nature, 2003, Vol. 424, No. 6950, P. 824–830.
4. Theoretical Assessment of Localized Surface Plasmon Resonance Properties of Au-Interlayer- Ag Multilayered Nanoshells / C. Liu, J. Lv, Z. Liu, S. Zheng, Q. Liu, T. Sun, P. K. Chu. Plasmonics, 2016, Vol. 11, No. 6, P. 1589–1595.
5. Shishodia M. S., Fainberg B. D., Nitzan A. Theory of energy transfer interactions near sphere and nanoshell based plasmonic nanostructures. Plasmonics: Metallic Nanostructures and Their Optical Properties IX, 2011, Vol. 8096, P. 80961G-1–80961G-5.
6. Nanoshell particles: synthesis, properties and applications / S. Kalele, S. W. Gosavi, J. Urban, S. K. Kulkarn. Current Science, 2006, P. 1038–1052.
7. Tam F., Moran C., Halas N. Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment. The Journal of Physical Chemistry B., 2004, Vol. 108, No. 45, P. 17290–17294.
8. Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development / M. A. Ochsenkühn, P. R. Jess, H. Stoquert, K. Dholakia, C. J. Campbell. ACS Nano, 2009, Vol. 3, No. 11, P. 3613–3621.
9. Nanoplasmonic renormalization and enhancement of Coulomb interactions / M. Durach, A. Rusina, V. I. Klimov, M. I Stockman. New Journal of Physics, 2008, Vol. 10, No. 10, P. 105011-1–105011-14.
10. Taylor A. B., Zijlstra P. Single-molecule plasmon sensing: current status and future prospects. ACS Sensors, 2017, Vol. 2, No. 8, P. 1103–1122.
11. Fitio V., Vernygor O., Yaremchuk I., Bobitski Y. Analytical approximations of the noble metals dielectric permittivity. IEEE 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET-2018), 2018, February, P. 426–430.
12. Modified design of a laser refractometer / I. Bodurov, I. Vlaeva, A. Viraneva, T. Yovcheva, S. Sainov. Nanoscience & Nanotechnology, 2016, Vol. 16, P. 31–33.
References (International): 1. Maier S. A. (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media.
2. Klimov V. V. (2010). Nanoplasmonics. M.: Fizmatlit.
3. Barnes W. L., Dereux A., Ebbesen T. W. (2003), “Surface plasmon subwavelength optics”, Nature, Vol. 424, No. 6950, pp. 824–830.
4. Liu C., Lv J., Liu Z., Zheng S., Liu Q., Sun T., Chu P.K. (2016), “Theoretical Assessment of Localized Surface Plasmon Resonance Properties of Au-Interlayer-Ag Multilayered Nanoshells”, Plasmonics, Vol. 11, No. 6, pp. 1589–1595.
5. Shishodia M. S., Fainberg B. D., Nitzan A. (2011), “Theory of energy transfer interactions near sphere and nanoshell based plasmonic nanostructures”, Plasmonics: Metallic Nanostructures and Their Optical Properties IX, Vol. 8096, pp. 80961G-1–80961G-5.
6. Kalele S., Gosavi S. W., Urban J., Kulkarni S.K. (2006), “Nanoshell particles: synthesis, properties and applications”, Current Science, pp. 1038–1052.
7. Tam F., Moran C., Halas N. (2004), “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment”, The Journal of Physical Chemistry B, Vol. 108, No. 45, pp. 17290–17294.
8. Ochsenkühn M. A., Jess P. R., Stoquert H., Dholakia K., Campbell C. J. (2009), “Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development”, ACS Nano, Vol. 3, No. 11, pp. 3613–3621.
9. Durach M., Rusina A., Klimov V. I., Stockman M. I. (2008), “Nanoplasmonic renormalization and enhancement of Coulomb interactions”, New Journal of Physics, Vol. 10, No 10, pp. 105011-1–105011-14.
10. Taylor A. B., Zijlstra P. (2017), “Single-molecule plasmon sensing: current status and future prospects”. ACS Sensors, Vol. 2, No. 8, pp. 1103–1122.
11. Fitio V., Vernygor, O., Yaremchuk, I., & Bobitski, Y. (2018, February). Analytical approximations of the noble metals dielectric permittivity. IEEE 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET-2018), pp. 426–430.
12. Bodurov I., Vlaeva I., Viraneva A., Yovcheva T., Sainov S., (2016), “Modified design of a laser refractometer”, Nanoscience & Nanotechnology, Vol. 16, pp. 31–33.
Content type: Article
Appears in Collections:Радіоелектроніка та телекомунікації. – 2020. – №915

Files in This Item:
File Description SizeFormat 
2020n915_Bulavinets_T_O-Spectral_characteristics_78-85.pdf1.1 MBAdobe PDFView/Open
2020n915_Bulavinets_T_O-Spectral_characteristics_78-85__COVER.png452.13 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.