DC Field | Value | Language |
dc.contributor.author | Булавінець, Т. О. | |
dc.contributor.author | Яремчук, І. Я. | |
dc.contributor.author | Бобицький, Я. В. | |
dc.contributor.author | Bulavinets, T. O. | |
dc.contributor.author | Yaremchuk, I. Ya. | |
dc.contributor.author | Bobitski, Ya. V. | |
dc.date.accessioned | 2021-12-21T12:29:38Z | - |
dc.date.available | 2021-12-21T12:29:38Z | - |
dc.date.created | 2020-02-20 | |
dc.date.issued | 2020-02-20 | |
dc.identifier.citation | Булавінець Т. О. Спектральні характеристики наноструктур типу ядро-оболонка в умовах плазмонного резонансу / Т. О. Булавінець, І. Я. Яремчук, Я. В. Бобицький // Вісник Національного університету “Львівська політехніка”. Серія: Радіоелектроніка та телекомунікації. — Львів : Видавництво Львівської політехніки, 2020. — № 915. — С. 78–85. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/56559 | - |
dc.description.abstract | Здійснено моделювання спектральних характеристик наноструктур типу ядро – оболонка,
а саме срібло – золото, срібло – мідь, срібло – діоксид титану та діоксид титану – срібло
в умовах локалізованого поверхневого плазмонного резонансу. Показано, що
зміною товщини оболонки на металевому чи напівпровідниковому ядрі можна керувати
спектральним положенням піка поверхневого плазмонного поглинання у видимій
області спектра та оцінено вплив геометричної деформації наноструктур на їхні оптичні
характеристики. | |
dc.description.abstract | In this paper, the spectral characteristics of the core-shell type nanostructures, namely
silver – silver, silver – copper, silver – titanium dioxide and titanium dioxide – silver in the
conditions of localized plasmon resonance have been theoretically researched for the purpose
of their further photonics and plasmonics applications. It is shown that by changing the
thickness of the shell on the metal or semiconductor core, one can shift the spectral position of
the surface plasmon absorption peak in the visible spectral region and evaluate the influence of
deformation of nanostructures on their optical characteristics. It is shown that in the case of
bimetallic structures, the spectral position of the absorption and scattering cross sections
peaks is not sensitive to changes in the thickness of the shell, only their amplitude changes. In
the case of nanostructures such as silver-titanium dioxide there is a clearly pronounced
additional peak in the spectra of absorption and scattering cross sections. Such a two-band
nature can be explained by the excitation of localized plasmons on two interfaces titanium
dioxide/silver and silver/environments. The spectral position of the both peaks of absorption
and scattering cross sections is shifted to the long-wave region of the spectrum, when the shell
thickness changes and when the nanostructure is deformed (extended) for such type of the
nanoshells. The structure of titanium dioxide – silver is characterized by a shift of the second
peak into the short-wave region of the spectrum when shell thickness increases and when there
are deformations. And the first one is practically not sensitive to such changes. It should be
noted that with a certain shell thickness, such structure will have characteristics similar to
those of a silver nanoparticle. | |
dc.format.extent | 78-85 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Вісник Національного університету “Львівська політехніка”. Серія: Радіоелектроніка та телекомунікації, 915, 2020 | |
dc.subject | наночастинка | |
dc.subject | нанооболонка | |
dc.subject | плазмонний резонанс | |
dc.subject | переріз поглинання | |
dc.subject | переріз розсіювання | |
dc.subject | nanoparticle | |
dc.subject | nanoshell | |
dc.subject | plasmon resonance | |
dc.subject | absorption cross-section | |
dc.subject | scattering cross-section | |
dc.title | Спектральні характеристики наноструктур типу ядро-оболонка в умовах плазмонного резонансу | |
dc.title.alternative | Spectral characteristics of the core-shell type nanostructures under plasmon resonance conditions | |
dc.type | Article | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.rights.holder | © Булавінець Т. О., Яремчук І. Я., Бобицький Я. В., 2020 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.format.pages | 8 | |
dc.identifier.citationen | Bulavinets T. O. Spectral characteristics of the core-shell type nanostructures under plasmon resonance conditions / T. O. Bulavinets, I. Ya. Yaremchuk, Ya. V. Bobitski // Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Serie: Radioelektronika ta telekomunikatsii. — Lviv : Lviv Politechnic Publishing House, 2020. — No 915. — P. 78–85. | |
dc.relation.references | 1. Maier S. A. Plasmonics: fundamentals and applications. Springer Science & Business Media, 2007. | |
dc.relation.references | 2. Климов В. В. Наноплазмоника. Физматлит, 2010. | |
dc.relation.references | 3. Barnes W. L., Dereux A., Ebbesen T. W. Surface plasmon subwavelength optics. Nature, 2003, Vol. 424, No. 6950, P. 824–830. | |
dc.relation.references | 4. Theoretical Assessment of Localized Surface Plasmon Resonance Properties of Au-Interlayer- Ag Multilayered Nanoshells / C. Liu, J. Lv, Z. Liu, S. Zheng, Q. Liu, T. Sun, P. K. Chu. Plasmonics, 2016, Vol. 11, No. 6, P. 1589–1595. | |
dc.relation.references | 5. Shishodia M. S., Fainberg B. D., Nitzan A. Theory of energy transfer interactions near sphere and nanoshell based plasmonic nanostructures. Plasmonics: Metallic Nanostructures and Their Optical Properties IX, 2011, Vol. 8096, P. 80961G-1–80961G-5. | |
dc.relation.references | 6. Nanoshell particles: synthesis, properties and applications / S. Kalele, S. W. Gosavi, J. Urban, S. K. Kulkarn. Current Science, 2006, P. 1038–1052. | |
dc.relation.references | 7. Tam F., Moran C., Halas N. Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment. The Journal of Physical Chemistry B., 2004, Vol. 108, No. 45, P. 17290–17294. | |
dc.relation.references | 8. Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development / M. A. Ochsenkühn, P. R. Jess, H. Stoquert, K. Dholakia, C. J. Campbell. ACS Nano, 2009, Vol. 3, No. 11, P. 3613–3621. | |
dc.relation.references | 9. Nanoplasmonic renormalization and enhancement of Coulomb interactions / M. Durach, A. Rusina, V. I. Klimov, M. I Stockman. New Journal of Physics, 2008, Vol. 10, No. 10, P. 105011-1–105011-14. | |
dc.relation.references | 10. Taylor A. B., Zijlstra P. Single-molecule plasmon sensing: current status and future prospects. ACS Sensors, 2017, Vol. 2, No. 8, P. 1103–1122. | |
dc.relation.references | 11. Fitio V., Vernygor O., Yaremchuk I., Bobitski Y. Analytical approximations of the noble metals dielectric permittivity. IEEE 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET-2018), 2018, February, P. 426–430. | |
dc.relation.references | 12. Modified design of a laser refractometer / I. Bodurov, I. Vlaeva, A. Viraneva, T. Yovcheva, S. Sainov. Nanoscience & Nanotechnology, 2016, Vol. 16, P. 31–33. | |
dc.relation.referencesen | 1. Maier S. A. (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media. | |
dc.relation.referencesen | 2. Klimov V. V. (2010). Nanoplasmonics. M.: Fizmatlit. | |
dc.relation.referencesen | 3. Barnes W. L., Dereux A., Ebbesen T. W. (2003), “Surface plasmon subwavelength optics”, Nature, Vol. 424, No. 6950, pp. 824–830. | |
dc.relation.referencesen | 4. Liu C., Lv J., Liu Z., Zheng S., Liu Q., Sun T., Chu P.K. (2016), “Theoretical Assessment of Localized Surface Plasmon Resonance Properties of Au-Interlayer-Ag Multilayered Nanoshells”, Plasmonics, Vol. 11, No. 6, pp. 1589–1595. | |
dc.relation.referencesen | 5. Shishodia M. S., Fainberg B. D., Nitzan A. (2011), “Theory of energy transfer interactions near sphere and nanoshell based plasmonic nanostructures”, Plasmonics: Metallic Nanostructures and Their Optical Properties IX, Vol. 8096, pp. 80961G-1–80961G-5. | |
dc.relation.referencesen | 6. Kalele S., Gosavi S. W., Urban J., Kulkarni S.K. (2006), “Nanoshell particles: synthesis, properties and applications”, Current Science, pp. 1038–1052. | |
dc.relation.referencesen | 7. Tam F., Moran C., Halas N. (2004), “Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment”, The Journal of Physical Chemistry B, Vol. 108, No. 45, pp. 17290–17294. | |
dc.relation.referencesen | 8. Ochsenkühn M. A., Jess P. R., Stoquert H., Dholakia K., Campbell C. J. (2009), “Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development”, ACS Nano, Vol. 3, No. 11, pp. 3613–3621. | |
dc.relation.referencesen | 9. Durach M., Rusina A., Klimov V. I., Stockman M. I. (2008), “Nanoplasmonic renormalization and enhancement of Coulomb interactions”, New Journal of Physics, Vol. 10, No 10, pp. 105011-1–105011-14. | |
dc.relation.referencesen | 10. Taylor A. B., Zijlstra P. (2017), “Single-molecule plasmon sensing: current status and future prospects”. ACS Sensors, Vol. 2, No. 8, pp. 1103–1122. | |
dc.relation.referencesen | 11. Fitio V., Vernygor, O., Yaremchuk, I., & Bobitski, Y. (2018, February). Analytical approximations of the noble metals dielectric permittivity. IEEE 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET-2018), pp. 426–430. | |
dc.relation.referencesen | 12. Bodurov I., Vlaeva I., Viraneva A., Yovcheva T., Sainov S., (2016), “Modified design of a laser refractometer”, Nanoscience & Nanotechnology, Vol. 16, pp. 31–33. | |
dc.citation.journalTitle | Вісник Національного університету “Львівська політехніка”. Серія: Радіоелектроніка та телекомунікації | |
dc.citation.issue | 915 | |
dc.citation.spage | 78 | |
dc.citation.epage | 85 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.subject.udc | 535.341 | |
Appears in Collections: | Радіоелектроніка та телекомунікації. – 2020. – №915
|