https://oldena.lpnu.ua/handle/ntb/55777
Title: | The Plasma-Induced Formation of PVP-Coated Silver Nanoparticles and Usage in Water Purification |
Other Titles: | Плазма-ініційоване одержання покритих пвп наночастинок срібла та їх застосування для очищення води |
Authors: | Skiba, Margarita Pivovarov, Alexander Vorobyova, Viktoria |
Affiliation: | Ukrainian State University of Chemical Technology National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" |
Bibliographic description (Ukraine): | Skiba M. The Plasma-Induced Formation of PVP-Coated Silver Nanoparticles and Usage in Water Purification / Margarita Skiba, Alexander Pivovarov, Viktoria Vorobyova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 1. — P. 47–54. |
Bibliographic description (International): | Skiba M. The Plasma-Induced Formation of PVP-Coated Silver Nanoparticles and Usage in Water Purification / Margarita Skiba, Alexander Pivovarov, Viktoria Vorobyova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 1. — P. 47–54. |
Is part of: | Chemistry & Chemical Technology, 1 (14), 2020 |
Issue: | 1 |
Issue Date: | 24-Jan-2020 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
DOI: | doi.org/10.23939/chcht14.01.047 |
Keywords: | наночастинки срібла плазма полівінілпіролідон композитний матеріал антибактеріальний silver nanoparticles plasma poly(N-vinylpyrrolidone) composite materials antibacterial |
Number of pages: | 8 |
Page range: | 47-54 |
Start page: | 47 |
End page: | 54 |
Abstract: | За допомогою контактної нерівноважної низькотемпературної плазми одержані наночастинки срібла
(AgНЧ) із застосуванням полівінілпіролідону (ПВП) як стабілізуючого агенту. Вивчено вплив концентрації ПВП на ефективність формування наночастинок срібла, їх
середній розмір та стабільність. Встановлено, що одержані наночастинки срібла проявляють антибактеріальну активність проти двох штамів грам-бактерій.
Одержано композитні гранули (AgНЧальгінат) з різною концентрацією ПВП для очищення води. The contact non-equilibrium low-temperature plasma technique is used to synthesize silver nanoparticles (AgNPs) employing polyvinyl pyrrolidone (PVP) as a capping agent. Influences of PVP concentration on the formation efficiency of silver nanoparticle, their average size and stability have been studied. The synthesized silver nanoparticles had a significant antibacterial activity against two strains of Gram bacteria. Silver nanoparticles (AgNPs)-alginate composite beads with different PVP concentration were synthesized as materials for water purification. |
URI: | https://ena.lpnu.ua/handle/ntb/55777 |
Copyright owner: | © Національний університет “Львівська політехніка”, 2020 © Skiba M., Pivovarov A., Vorobyova V., 2020 |
URL for reference material: | https://doi.org/10.1016/j.jece.2017.11.053 https://doi.org/10.1007/s10853-017-1501-z https://doi.org/10.1021/am3022569 https://doi.org/10.1016/j.snb.2017.01.038 https://doi.org/10.3390/molecules20058856 https://doi.org/10.1155/2015/123696 https://doi.org/10.1134/s1070363215050497 https://doi.org/10.15587/1729-4061.2017.118914 https://doi.org/10.15587/1729-4061.2018.127103 https://doi.org/10.19261cjm.2018.475 https://doi.org/10.1016/j.nanoso.2017.12.008 https://doi.org/10.1177/1847980417752849 https://doi.org/10.1021/jp4112712 https://doi.org/10.1186/2228-5326-3-19 https://doi.org/10.1007/s40097-016-0212-3 https://doi.org/10.1016/j.matlet.2006.11.064 https://doi.org/10.1039/C5DT02964C https://doi.org/10.3390/ijerph9010244 https://doi.org/10.1021/cm021804b https://doi.org/10.23939/chcht10.02.187 https://doi.org/10.1016/j.msec.2012.05.016 https://doi.org/10.1016/j.watres.2018.03.048 https://doi.org/10.1016/j.electacta.2005.04.071 https://doi.org/10.1007/s11468-016-0495-8 https://doi.org/10.1016/j.biomaterials.2005.05.040 https://doi.org/10.1007/s11468-009-9120-4 https://doi.org/10.1016/j.colsurfb.2011.07.041 https://doi.org/10.1039/B914875B https://doi.org/10.1016/B978-0-323-46152-8.00026-3 https://doi.org/10.1088/0957-4484/22/27/275708 |
References (Ukraine): | [1] Sudhakar P., Soni H.: J. Environ. Chem. Eng., 2018, 6, 28. https://doi.org/10.1016/j.jece.2017.11.053 [2] Tao L., Lou Y., Zhao Y. et al.: J. Mater. Sci., 2018, 53, 573. https://doi.org/10.1007/s10853-017-1501-z [3] Alshehri A., Jakubowska M., Młożniak A. et al.: Appl. Mater. Interfaces, 2012, 4, 7007. https://doi.org/10.1021/am3022569 [4] Deepak S., Niladri S., Gyanaranjan S. et al.: Sensor Actuator B, 2017, 246, 96. https://doi.org/10.1016/j.snb.2017.01.038 [5] Franci G., Falanga A., Galdiero S. et al.: Molecules, 2015, 20, 8856. https://doi.org/10.3390/molecules20058856 [6] Iravani S., Korbekandi H., Mir Mohammadi S., Zolfaghari B.: Res. Pharm. Sci., 2014, 9, 385. [7] Saito G., Akiyama T.: J. Nanomater., 2015, 16, 1. https://doi.org/10.1155/2015/123696 [8] Pivovarov A., Kravchenko A., Tishchenko A. et al.: Russ. J. Gen. Chem., 2015, 85, 1339. https://doi.org/10.1134/s1070363215050497 [9] Skiba M., Pivovarov A., Makarova A. et al.: East.-Eur. J. Enterpr. Technol., 2017, 6, 59. https://doi.org/10.15587/1729-4061.2017.118914 [10] Pivovarov О., Skіba М., Makarova А. et al.: Voprosy Khim. Khim. Tekhnol., 2017, 6, 82. [11] Skiba M., Pivovarov A., Makarova A., Vorobyova V.: East.- Eur. J. Enterpr. Technol., 2018, 2, 4. https://doi.org/10.15587/1729-4061.2018.127103 [12] Skiba M., Pivovarov A., Makarova A., Vorobyova V.: Сhem. J. Moldova, 2018, 13, 7. https://doi.org/10.19261cjm.2018.475 [13] Skіba М., Pivovarov О., Makarova А., Parkhomenko V.: Voprosy Khim. Khim. Tekhnol., 2018, 3, 113. [14] Muthivhi R., Parani B., Oluwafemi M.: Nano-Struct. NanoObjects, 2018, 13, 132. https://doi.org/10.1016/j.nanoso.2017.12.008 [15] El Hotaby W., Sherif H., Hemdan B. et al.: Acta Physica Polonica A, 2017, 131, 1554. [16] Tseng K., Chou C., Liu T. et al.: Adv. Mat. Sci. Eng., 2018, 8, 1. https://doi.org/10.1177/1847980417752849 [17] Bharati V., Xavier P., Kar G. et al.: J. Phys. Chem. B, 2014, 118, 2214. https://doi.org/10.1021/jp4112712 [18] Naseri M., Saion E., Zadeh N.: Int. Nano Lett., 2013, 3, 19. https://doi.org/10.1186/2228-5326-3-19 [19] Mirzaei A., Janghorban K., Hashemi B. et al.: J. Nanostruct. Chem., 2017, 7, 37. https://doi.org/10.1007/s40097-016-0212-3 [20] Khanna P., Singh N., Kulkarni D. et al.: Mater. Lett., 2007, 61, 3366. https://doi.org/10.1016/j.matlet.2006.11.064 [21] Koczkur K., Mourdikoudis S., Polavarapu L., Skrabalak S.: Dalton Trans., 2015, 44, 17883. https://doi.org/10.1039/C5DT02964C [22] Mpenyana-Monyatsi L., Mthombeni N., Onyango M., Momba M.: Int. J. Environ. Res. Public. Health, 2012, 9, 244. https://doi.org/10.3390/ijerph9010244 [23] Magdassi S., Bassa A., Vinetsky Y., Kamyshny A.: Chem. Mater., 2003, 15, 2208. https://doi.org/10.1021/cm021804b [24] Skorokhoda V., Semenyuk N., Dziaman L., Suberlyak O.: Chem. Chem. Technol., 2016, 10, 187. https://doi.org/10.23939/chcht10.02.187 [25] Skorokhoda V., Semenyuk N., Dziaman I. et al.: Voprosy Khim. Khim. Tekhnol., 2018, 2, 101. [26] Pencheva D., Bryaskova R., Kantardjiev T.: Mat. Sci. Eng. C, 2012, 32, 2048. https://doi.org/10.1016/j.msec.2012.05.016 [27] Wang X., Fan W., Dong Z. et al.: Water Res., 2018, 138, 224. https://doi.org/10.1016/j.watres.2018.03.048 [28] Cho K., Park J., Osaka T., Park S.: Electrochim. Acta, 2005, 51, 956. https://doi.org/10.1016/j.electacta.2005.04.071 [29] Saliminasab M., Garaei M., Moradian R. et al.: Plasmonics, 2018, 13, 155. https://doi.org/10.1007/s11468-016-0495-8 [30] Taylor P., Ussher A., Burrell R.: Biomaterials, 2005, 26, 7221. https://doi.org/10.1016/j.biomaterials.2005.05.040 [31] Amendola V., Bakr O., Stellacci F.: Plasmonics, 2010, 5, 85. https://doi.org/10.1007/s11468-009-9120-4 [32] Lee H., Lee S., Oh E. et al.: J. Coll. Surf. B, 2011, 88, 505. https://doi.org/10.1016/j.colsurfb.2011.07.041 [33] Kitller S., Greulich G., Gebauer J. et al.: J. Mat. Chem., 2010, 20, 512. https://doi.org/10.1039/B914875B [34] Silva L., Silveira A., Bonatto C. et al.: Chapter 26 - Silver Nanoparticles as Antimicrobial Agents: Past, Present, and Future [in:] Nanostructures for Antimicrobial Therapy. Elsevier 2017, 577-596. https://doi.org/10.1016/B978-0-323-46152-8.00026-3 [35] Kiss F., Miotto R., Ferraz A.: Nanotechnology, 2011, 22, 275708. https://doi.org/10.1088/0957-4484/22/27/275708 |
References (International): | [1] Sudhakar P., Soni H., J. Environ. Chem. Eng., 2018, 6, 28. https://doi.org/10.1016/j.jece.2017.11.053 [2] Tao L., Lou Y., Zhao Y. et al., J. Mater. Sci., 2018, 53, 573. https://doi.org/10.1007/s10853-017-1501-z [3] Alshehri A., Jakubowska M., Młożniak A. et al., Appl. Mater. Interfaces, 2012, 4, 7007. https://doi.org/10.1021/am3022569 [4] Deepak S., Niladri S., Gyanaranjan S. et al., Sensor Actuator B, 2017, 246, 96. https://doi.org/10.1016/j.snb.2017.01.038 [5] Franci G., Falanga A., Galdiero S. et al., Molecules, 2015, 20, 8856. https://doi.org/10.3390/molecules20058856 [6] Iravani S., Korbekandi H., Mir Mohammadi S., Zolfaghari B., Res. Pharm. Sci., 2014, 9, 385. [7] Saito G., Akiyama T., J. Nanomater., 2015, 16, 1. https://doi.org/10.1155/2015/123696 [8] Pivovarov A., Kravchenko A., Tishchenko A. et al., Russ. J. Gen. Chem., 2015, 85, 1339. https://doi.org/10.1134/s1070363215050497 [9] Skiba M., Pivovarov A., Makarova A. et al., East.-Eur. J. Enterpr. Technol., 2017, 6, 59. https://doi.org/10.15587/1729-4061.2017.118914 [10] Pivovarov O., Skiba M., Makarova A. et al., Voprosy Khim. Khim. Tekhnol., 2017, 6, 82. [11] Skiba M., Pivovarov A., Makarova A., Vorobyova V., East, Eur. J. Enterpr. Technol., 2018, 2, 4. https://doi.org/10.15587/1729-4061.2018.127103 [12] Skiba M., Pivovarov A., Makarova A., Vorobyova V., Shem. J. Moldova, 2018, 13, 7. https://doi.org/10.19261cjm.2018.475 [13] Skiba M., Pivovarov O., Makarova A., Parkhomenko V., Voprosy Khim. Khim. Tekhnol., 2018, 3, 113. [14] Muthivhi R., Parani B., Oluwafemi M., Nano-Struct. NanoObjects, 2018, 13, 132. https://doi.org/10.1016/j.nanoso.2017.12.008 [15] El Hotaby W., Sherif H., Hemdan B. et al., Acta Physica Polonica A, 2017, 131, 1554. [16] Tseng K., Chou C., Liu T. et al., Adv. Mat. Sci. Eng., 2018, 8, 1. https://doi.org/10.1177/1847980417752849 [17] Bharati V., Xavier P., Kar G. et al., J. Phys. Chem. B, 2014, 118, 2214. https://doi.org/10.1021/jp4112712 [18] Naseri M., Saion E., Zadeh N., Int. Nano Lett., 2013, 3, 19. https://doi.org/10.1186/2228-5326-3-19 [19] Mirzaei A., Janghorban K., Hashemi B. et al., J. Nanostruct. Chem., 2017, 7, 37. https://doi.org/10.1007/s40097-016-0212-3 [20] Khanna P., Singh N., Kulkarni D. et al., Mater. Lett., 2007, 61, 3366. https://doi.org/10.1016/j.matlet.2006.11.064 [21] Koczkur K., Mourdikoudis S., Polavarapu L., Skrabalak S., Dalton Trans., 2015, 44, 17883. https://doi.org/10.1039/P.5DT02964C [22] Mpenyana-Monyatsi L., Mthombeni N., Onyango M., Momba M., Int. J. Environ. Res. Public. Health, 2012, 9, 244. https://doi.org/10.3390/ijerph9010244 [23] Magdassi S., Bassa A., Vinetsky Y., Kamyshny A., Chem. Mater., 2003, 15, 2208. https://doi.org/10.1021/cm021804b [24] Skorokhoda V., Semenyuk N., Dziaman L., Suberlyak O., Chem. Chem. Technol., 2016, 10, 187. https://doi.org/10.23939/chcht10.02.187 [25] Skorokhoda V., Semenyuk N., Dziaman I. et al., Voprosy Khim. Khim. Tekhnol., 2018, 2, 101. [26] Pencheva D., Bryaskova R., Kantardjiev T., Mat. Sci. Eng. C, 2012, 32, 2048. https://doi.org/10.1016/j.msec.2012.05.016 [27] Wang X., Fan W., Dong Z. et al., Water Res., 2018, 138, 224. https://doi.org/10.1016/j.watres.2018.03.048 [28] Cho K., Park J., Osaka T., Park S., Electrochim. Acta, 2005, 51, 956. https://doi.org/10.1016/j.electacta.2005.04.071 [29] Saliminasab M., Garaei M., Moradian R. et al., Plasmonics, 2018, 13, 155. https://doi.org/10.1007/s11468-016-0495-8 [30] Taylor P., Ussher A., Burrell R., Biomaterials, 2005, 26, 7221. https://doi.org/10.1016/j.biomaterials.2005.05.040 [31] Amendola V., Bakr O., Stellacci F., Plasmonics, 2010, 5, 85. https://doi.org/10.1007/s11468-009-9120-4 [32] Lee H., Lee S., Oh E. et al., J. Coll. Surf. B, 2011, 88, 505. https://doi.org/10.1016/j.colsurfb.2011.07.041 [33] Kitller S., Greulich G., Gebauer J. et al., J. Mat. Chem., 2010, 20, 512. https://doi.org/10.1039/B914875B [34] Silva L., Silveira A., Bonatto C. et al., Chapter 26 - Silver Nanoparticles as Antimicrobial Agents: Past, Present, and Future [in:] Nanostructures for Antimicrobial Therapy. Elsevier 2017, 577-596. https://doi.org/10.1016/B978-0-323-46152-8.00026-3 [35] Kiss F., Miotto R., Ferraz A., Nanotechnology, 2011, 22, 275708. https://doi.org/10.1088/0957-4484/22/27/275708 |
Content type: | Article |
Appears in Collections: | Chemistry & Chemical Technology. – 2020. – Vol. 14, No. 1 |
File | Description | Size | Format | |
---|---|---|---|---|
2020v14n1_Skiba_M-The_Plasma_Induced_Formation_47-54.pdf | 840.26 kB | Adobe PDF | View/Open | |
2020v14n1_Skiba_M-The_Plasma_Induced_Formation_47-54__COVER.png | 560.52 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.