DC Field | Value | Language |
dc.contributor.author | Skiba, Margarita | |
dc.contributor.author | Pivovarov, Alexander | |
dc.contributor.author | Vorobyova, Viktoria | |
dc.date.accessioned | 2020-12-23T13:24:03Z | - |
dc.date.available | 2020-12-23T13:24:03Z | - |
dc.date.created | 2020-01-24 | |
dc.date.issued | 2020-01-24 | |
dc.identifier.citation | Skiba M. The Plasma-Induced Formation of PVP-Coated Silver Nanoparticles and Usage in Water Purification / Margarita Skiba, Alexander Pivovarov, Viktoria Vorobyova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 1. — P. 47–54. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/55777 | - |
dc.description.abstract | За допомогою контактної нерівноважної низькотемпературної плазми одержані наночастинки срібла
(AgНЧ) із застосуванням полівінілпіролідону (ПВП) як стабілізуючого агенту. Вивчено вплив концентрації ПВП на ефективність формування наночастинок срібла, їх
середній розмір та стабільність. Встановлено, що одержані наночастинки срібла проявляють антибактеріальну активність проти двох штамів грам-бактерій.
Одержано композитні гранули (AgНЧальгінат) з різною концентрацією ПВП для очищення води. | |
dc.description.abstract | The contact non-equilibrium low-temperature
plasma technique is used to synthesize silver nanoparticles
(AgNPs) employing polyvinyl pyrrolidone (PVP) as a
capping agent. Influences of PVP concentration on the
formation efficiency of silver nanoparticle, their average
size and stability have been studied. The synthesized
silver nanoparticles had a significant antibacterial activity
against two strains of Gram bacteria. Silver nanoparticles
(AgNPs)-alginate composite beads with different PVP
concentration were synthesized as materials for water purification. | |
dc.format.extent | 47-54 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (14), 2020 | |
dc.relation.uri | https://doi.org/10.1016/j.jece.2017.11.053 | |
dc.relation.uri | https://doi.org/10.1007/s10853-017-1501-z | |
dc.relation.uri | https://doi.org/10.1021/am3022569 | |
dc.relation.uri | https://doi.org/10.1016/j.snb.2017.01.038 | |
dc.relation.uri | https://doi.org/10.3390/molecules20058856 | |
dc.relation.uri | https://doi.org/10.1155/2015/123696 | |
dc.relation.uri | https://doi.org/10.1134/s1070363215050497 | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2017.118914 | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2018.127103 | |
dc.relation.uri | https://doi.org/10.19261cjm.2018.475 | |
dc.relation.uri | https://doi.org/10.1016/j.nanoso.2017.12.008 | |
dc.relation.uri | https://doi.org/10.1177/1847980417752849 | |
dc.relation.uri | https://doi.org/10.1021/jp4112712 | |
dc.relation.uri | https://doi.org/10.1186/2228-5326-3-19 | |
dc.relation.uri | https://doi.org/10.1007/s40097-016-0212-3 | |
dc.relation.uri | https://doi.org/10.1016/j.matlet.2006.11.064 | |
dc.relation.uri | https://doi.org/10.1039/C5DT02964C | |
dc.relation.uri | https://doi.org/10.3390/ijerph9010244 | |
dc.relation.uri | https://doi.org/10.1021/cm021804b | |
dc.relation.uri | https://doi.org/10.23939/chcht10.02.187 | |
dc.relation.uri | https://doi.org/10.1016/j.msec.2012.05.016 | |
dc.relation.uri | https://doi.org/10.1016/j.watres.2018.03.048 | |
dc.relation.uri | https://doi.org/10.1016/j.electacta.2005.04.071 | |
dc.relation.uri | https://doi.org/10.1007/s11468-016-0495-8 | |
dc.relation.uri | https://doi.org/10.1016/j.biomaterials.2005.05.040 | |
dc.relation.uri | https://doi.org/10.1007/s11468-009-9120-4 | |
dc.relation.uri | https://doi.org/10.1016/j.colsurfb.2011.07.041 | |
dc.relation.uri | https://doi.org/10.1039/B914875B | |
dc.relation.uri | https://doi.org/10.1016/B978-0-323-46152-8.00026-3 | |
dc.relation.uri | https://doi.org/10.1088/0957-4484/22/27/275708 | |
dc.subject | наночастинки срібла | |
dc.subject | плазма | |
dc.subject | полівінілпіролідон | |
dc.subject | композитний матеріал | |
dc.subject | антибактеріальний | |
dc.subject | silver nanoparticles | |
dc.subject | plasma | |
dc.subject | poly(N-vinylpyrrolidone) | |
dc.subject | composite materials | |
dc.subject | antibacterial | |
dc.title | The Plasma-Induced Formation of PVP-Coated Silver Nanoparticles and Usage in Water Purification | |
dc.title.alternative | Плазма-ініційоване одержання покритих пвп наночастинок срібла та їх застосування для очищення води | |
dc.type | Article | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.rights.holder | © Skiba M., Pivovarov A., Vorobyova V., 2020 | |
dc.contributor.affiliation | Ukrainian State University of Chemical Technology | |
dc.contributor.affiliation | National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" | |
dc.format.pages | 8 | |
dc.identifier.citationen | Skiba M. The Plasma-Induced Formation of PVP-Coated Silver Nanoparticles and Usage in Water Purification / Margarita Skiba, Alexander Pivovarov, Viktoria Vorobyova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 1. — P. 47–54. | |
dc.identifier.doi | doi.org/10.23939/chcht14.01.047 | |
dc.relation.references | [1] Sudhakar P., Soni H.: J. Environ. Chem. Eng., 2018, 6, 28. https://doi.org/10.1016/j.jece.2017.11.053 | |
dc.relation.references | [2] Tao L., Lou Y., Zhao Y. et al.: J. Mater. Sci., 2018, 53, 573. https://doi.org/10.1007/s10853-017-1501-z | |
dc.relation.references | [3] Alshehri A., Jakubowska M., Młożniak A. et al.: Appl. Mater. Interfaces, 2012, 4, 7007. https://doi.org/10.1021/am3022569 | |
dc.relation.references | [4] Deepak S., Niladri S., Gyanaranjan S. et al.: Sensor Actuator B, 2017, 246, 96. https://doi.org/10.1016/j.snb.2017.01.038 | |
dc.relation.references | [5] Franci G., Falanga A., Galdiero S. et al.: Molecules, 2015, 20, 8856. https://doi.org/10.3390/molecules20058856 | |
dc.relation.references | [6] Iravani S., Korbekandi H., Mir Mohammadi S., Zolfaghari B.: Res. Pharm. Sci., 2014, 9, 385. | |
dc.relation.references | [7] Saito G., Akiyama T.: J. Nanomater., 2015, 16, 1. https://doi.org/10.1155/2015/123696 | |
dc.relation.references | [8] Pivovarov A., Kravchenko A., Tishchenko A. et al.: Russ. J. Gen. Chem., 2015, 85, 1339. https://doi.org/10.1134/s1070363215050497 | |
dc.relation.references | [9] Skiba M., Pivovarov A., Makarova A. et al.: East.-Eur. J. Enterpr. Technol., 2017, 6, 59. https://doi.org/10.15587/1729-4061.2017.118914 | |
dc.relation.references | [10] Pivovarov О., Skіba М., Makarova А. et al.: Voprosy Khim. Khim. Tekhnol., 2017, 6, 82. | |
dc.relation.references | [11] Skiba M., Pivovarov A., Makarova A., Vorobyova V.: East.- Eur. J. Enterpr. Technol., 2018, 2, 4. https://doi.org/10.15587/1729-4061.2018.127103 | |
dc.relation.references | [12] Skiba M., Pivovarov A., Makarova A., Vorobyova V.: Сhem. J. Moldova, 2018, 13, 7. https://doi.org/10.19261cjm.2018.475 | |
dc.relation.references | [13] Skіba М., Pivovarov О., Makarova А., Parkhomenko V.: Voprosy Khim. Khim. Tekhnol., 2018, 3, 113. | |
dc.relation.references | [14] Muthivhi R., Parani B., Oluwafemi M.: Nano-Struct. NanoObjects, 2018, 13, 132. https://doi.org/10.1016/j.nanoso.2017.12.008 | |
dc.relation.references | [15] El Hotaby W., Sherif H., Hemdan B. et al.: Acta Physica Polonica A, 2017, 131, 1554. | |
dc.relation.references | [16] Tseng K., Chou C., Liu T. et al.: Adv. Mat. Sci. Eng., 2018, 8, 1. https://doi.org/10.1177/1847980417752849 | |
dc.relation.references | [17] Bharati V., Xavier P., Kar G. et al.: J. Phys. Chem. B, 2014, 118, 2214. https://doi.org/10.1021/jp4112712 | |
dc.relation.references | [18] Naseri M., Saion E., Zadeh N.: Int. Nano Lett., 2013, 3, 19. https://doi.org/10.1186/2228-5326-3-19 | |
dc.relation.references | [19] Mirzaei A., Janghorban K., Hashemi B. et al.: J. Nanostruct. Chem., 2017, 7, 37. https://doi.org/10.1007/s40097-016-0212-3 | |
dc.relation.references | [20] Khanna P., Singh N., Kulkarni D. et al.: Mater. Lett., 2007, 61, 3366. https://doi.org/10.1016/j.matlet.2006.11.064 | |
dc.relation.references | [21] Koczkur K., Mourdikoudis S., Polavarapu L., Skrabalak S.: Dalton Trans., 2015, 44, 17883. https://doi.org/10.1039/C5DT02964C | |
dc.relation.references | [22] Mpenyana-Monyatsi L., Mthombeni N., Onyango M., Momba M.: Int. J. Environ. Res. Public. Health, 2012, 9, 244. https://doi.org/10.3390/ijerph9010244 | |
dc.relation.references | [23] Magdassi S., Bassa A., Vinetsky Y., Kamyshny A.: Chem. Mater., 2003, 15, 2208. https://doi.org/10.1021/cm021804b | |
dc.relation.references | [24] Skorokhoda V., Semenyuk N., Dziaman L., Suberlyak O.: Chem. Chem. Technol., 2016, 10, 187. https://doi.org/10.23939/chcht10.02.187 | |
dc.relation.references | [25] Skorokhoda V., Semenyuk N., Dziaman I. et al.: Voprosy Khim. Khim. Tekhnol., 2018, 2, 101. | |
dc.relation.references | [26] Pencheva D., Bryaskova R., Kantardjiev T.: Mat. Sci. Eng. C, 2012, 32, 2048. https://doi.org/10.1016/j.msec.2012.05.016 | |
dc.relation.references | [27] Wang X., Fan W., Dong Z. et al.: Water Res., 2018, 138, 224. https://doi.org/10.1016/j.watres.2018.03.048 | |
dc.relation.references | [28] Cho K., Park J., Osaka T., Park S.: Electrochim. Acta, 2005, 51, 956. https://doi.org/10.1016/j.electacta.2005.04.071 | |
dc.relation.references | [29] Saliminasab M., Garaei M., Moradian R. et al.: Plasmonics, 2018, 13, 155. https://doi.org/10.1007/s11468-016-0495-8 | |
dc.relation.references | [30] Taylor P., Ussher A., Burrell R.: Biomaterials, 2005, 26, 7221. https://doi.org/10.1016/j.biomaterials.2005.05.040 | |
dc.relation.references | [31] Amendola V., Bakr O., Stellacci F.: Plasmonics, 2010, 5, 85. https://doi.org/10.1007/s11468-009-9120-4 | |
dc.relation.references | [32] Lee H., Lee S., Oh E. et al.: J. Coll. Surf. B, 2011, 88, 505. https://doi.org/10.1016/j.colsurfb.2011.07.041 | |
dc.relation.references | [33] Kitller S., Greulich G., Gebauer J. et al.: J. Mat. Chem., 2010, 20, 512. https://doi.org/10.1039/B914875B | |
dc.relation.references | [34] Silva L., Silveira A., Bonatto C. et al.: Chapter 26 - Silver Nanoparticles as Antimicrobial Agents: Past, Present, and Future [in:] Nanostructures for Antimicrobial Therapy. Elsevier 2017, 577-596. https://doi.org/10.1016/B978-0-323-46152-8.00026-3 | |
dc.relation.references | [35] Kiss F., Miotto R., Ferraz A.: Nanotechnology, 2011, 22, 275708. https://doi.org/10.1088/0957-4484/22/27/275708 | |
dc.relation.referencesen | [1] Sudhakar P., Soni H., J. Environ. Chem. Eng., 2018, 6, 28. https://doi.org/10.1016/j.jece.2017.11.053 | |
dc.relation.referencesen | [2] Tao L., Lou Y., Zhao Y. et al., J. Mater. Sci., 2018, 53, 573. https://doi.org/10.1007/s10853-017-1501-z | |
dc.relation.referencesen | [3] Alshehri A., Jakubowska M., Młożniak A. et al., Appl. Mater. Interfaces, 2012, 4, 7007. https://doi.org/10.1021/am3022569 | |
dc.relation.referencesen | [4] Deepak S., Niladri S., Gyanaranjan S. et al., Sensor Actuator B, 2017, 246, 96. https://doi.org/10.1016/j.snb.2017.01.038 | |
dc.relation.referencesen | [5] Franci G., Falanga A., Galdiero S. et al., Molecules, 2015, 20, 8856. https://doi.org/10.3390/molecules20058856 | |
dc.relation.referencesen | [6] Iravani S., Korbekandi H., Mir Mohammadi S., Zolfaghari B., Res. Pharm. Sci., 2014, 9, 385. | |
dc.relation.referencesen | [7] Saito G., Akiyama T., J. Nanomater., 2015, 16, 1. https://doi.org/10.1155/2015/123696 | |
dc.relation.referencesen | [8] Pivovarov A., Kravchenko A., Tishchenko A. et al., Russ. J. Gen. Chem., 2015, 85, 1339. https://doi.org/10.1134/s1070363215050497 | |
dc.relation.referencesen | [9] Skiba M., Pivovarov A., Makarova A. et al., East.-Eur. J. Enterpr. Technol., 2017, 6, 59. https://doi.org/10.15587/1729-4061.2017.118914 | |
dc.relation.referencesen | [10] Pivovarov O., Skiba M., Makarova A. et al., Voprosy Khim. Khim. Tekhnol., 2017, 6, 82. | |
dc.relation.referencesen | [11] Skiba M., Pivovarov A., Makarova A., Vorobyova V., East, Eur. J. Enterpr. Technol., 2018, 2, 4. https://doi.org/10.15587/1729-4061.2018.127103 | |
dc.relation.referencesen | [12] Skiba M., Pivovarov A., Makarova A., Vorobyova V., Shem. J. Moldova, 2018, 13, 7. https://doi.org/10.19261cjm.2018.475 | |
dc.relation.referencesen | [13] Skiba M., Pivovarov O., Makarova A., Parkhomenko V., Voprosy Khim. Khim. Tekhnol., 2018, 3, 113. | |
dc.relation.referencesen | [14] Muthivhi R., Parani B., Oluwafemi M., Nano-Struct. NanoObjects, 2018, 13, 132. https://doi.org/10.1016/j.nanoso.2017.12.008 | |
dc.relation.referencesen | [15] El Hotaby W., Sherif H., Hemdan B. et al., Acta Physica Polonica A, 2017, 131, 1554. | |
dc.relation.referencesen | [16] Tseng K., Chou C., Liu T. et al., Adv. Mat. Sci. Eng., 2018, 8, 1. https://doi.org/10.1177/1847980417752849 | |
dc.relation.referencesen | [17] Bharati V., Xavier P., Kar G. et al., J. Phys. Chem. B, 2014, 118, 2214. https://doi.org/10.1021/jp4112712 | |
dc.relation.referencesen | [18] Naseri M., Saion E., Zadeh N., Int. Nano Lett., 2013, 3, 19. https://doi.org/10.1186/2228-5326-3-19 | |
dc.relation.referencesen | [19] Mirzaei A., Janghorban K., Hashemi B. et al., J. Nanostruct. Chem., 2017, 7, 37. https://doi.org/10.1007/s40097-016-0212-3 | |
dc.relation.referencesen | [20] Khanna P., Singh N., Kulkarni D. et al., Mater. Lett., 2007, 61, 3366. https://doi.org/10.1016/j.matlet.2006.11.064 | |
dc.relation.referencesen | [21] Koczkur K., Mourdikoudis S., Polavarapu L., Skrabalak S., Dalton Trans., 2015, 44, 17883. https://doi.org/10.1039/P.5DT02964C | |
dc.relation.referencesen | [22] Mpenyana-Monyatsi L., Mthombeni N., Onyango M., Momba M., Int. J. Environ. Res. Public. Health, 2012, 9, 244. https://doi.org/10.3390/ijerph9010244 | |
dc.relation.referencesen | [23] Magdassi S., Bassa A., Vinetsky Y., Kamyshny A., Chem. Mater., 2003, 15, 2208. https://doi.org/10.1021/cm021804b | |
dc.relation.referencesen | [24] Skorokhoda V., Semenyuk N., Dziaman L., Suberlyak O., Chem. Chem. Technol., 2016, 10, 187. https://doi.org/10.23939/chcht10.02.187 | |
dc.relation.referencesen | [25] Skorokhoda V., Semenyuk N., Dziaman I. et al., Voprosy Khim. Khim. Tekhnol., 2018, 2, 101. | |
dc.relation.referencesen | [26] Pencheva D., Bryaskova R., Kantardjiev T., Mat. Sci. Eng. C, 2012, 32, 2048. https://doi.org/10.1016/j.msec.2012.05.016 | |
dc.relation.referencesen | [27] Wang X., Fan W., Dong Z. et al., Water Res., 2018, 138, 224. https://doi.org/10.1016/j.watres.2018.03.048 | |
dc.relation.referencesen | [28] Cho K., Park J., Osaka T., Park S., Electrochim. Acta, 2005, 51, 956. https://doi.org/10.1016/j.electacta.2005.04.071 | |
dc.relation.referencesen | [29] Saliminasab M., Garaei M., Moradian R. et al., Plasmonics, 2018, 13, 155. https://doi.org/10.1007/s11468-016-0495-8 | |
dc.relation.referencesen | [30] Taylor P., Ussher A., Burrell R., Biomaterials, 2005, 26, 7221. https://doi.org/10.1016/j.biomaterials.2005.05.040 | |
dc.relation.referencesen | [31] Amendola V., Bakr O., Stellacci F., Plasmonics, 2010, 5, 85. https://doi.org/10.1007/s11468-009-9120-4 | |
dc.relation.referencesen | [32] Lee H., Lee S., Oh E. et al., J. Coll. Surf. B, 2011, 88, 505. https://doi.org/10.1016/j.colsurfb.2011.07.041 | |
dc.relation.referencesen | [33] Kitller S., Greulich G., Gebauer J. et al., J. Mat. Chem., 2010, 20, 512. https://doi.org/10.1039/B914875B | |
dc.relation.referencesen | [34] Silva L., Silveira A., Bonatto C. et al., Chapter 26 - Silver Nanoparticles as Antimicrobial Agents: Past, Present, and Future [in:] Nanostructures for Antimicrobial Therapy. Elsevier 2017, 577-596. https://doi.org/10.1016/B978-0-323-46152-8.00026-3 | |
dc.relation.referencesen | [35] Kiss F., Miotto R., Ferraz A., Nanotechnology, 2011, 22, 275708. https://doi.org/10.1088/0957-4484/22/27/275708 | |
dc.citation.issue | 1 | |
dc.citation.spage | 47 | |
dc.citation.epage | 54 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry & Chemical Technology. – 2020. – Vol. 14, No. 1
|