https://oldena.lpnu.ua/handle/ntb/52233
Title: | Simple Universal Translator as an Alternative Compiler-Compiler |
Authors: | Melnyk, Anatoliy Kozak, Nazar |
Affiliation: | Lviv Polytechnic National University |
Bibliographic description (Ukraine): | Melnyk A. Simple Universal Translator as an Alternative Compiler-Compiler / Anatoliy Melnyk, Nazar Kozak // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 4. — No 2. — P. 105–109. |
Bibliographic description (International): | Melnyk A. Simple Universal Translator as an Alternative Compiler-Compiler / Anatoliy Melnyk, Nazar Kozak // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 4. — No 2. — P. 105–109. |
Is part of: | Advances in Cyber-Physical Systems, 2 (4), 2019 Advances in Cyber-Physical Systems, 2 (4), 2019 |
Journal/Collection: | Advances in Cyber-Physical Systems |
Issue: | 2 |
Issue Date: | 26-Feb-2019 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
Keywords: | compiler-compiler universal translator Backus–Naur form |
Number of pages: | 5 |
Page range: | 105-109 |
Start page: | 105 |
End page: | 109 |
Abstract: | This article deals with ways of how to implement a simple universal translator. Such universal translator may be an alternative to the compiler-compiler. |
URI: | https://ena.lpnu.ua/handle/ntb/52233 |
Copyright owner: | © Національний університет “Львівська політехніка”, 2019 © Melnyk A., Kozak N., 2019 |
URL for reference material: | https://www.boost.org/doc/libs/1_67_0/libs/spirit/doc/html/index.html |
References (Ukraine): | [1] Aho, Sethi, Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley, 1986. ISBN 0-201-10088-6. [2] Peter Mosses. SIS: A Compiler-Generator System Using Denotational Semantics, Report 78-4-3, Dept. of Computer Science, University of Aarhus, Denmark, June 1978. [3] C. Stephen Carr, David A. Luther, Sherian Erdmann, The TREEMETA Compiler-Compiler System: A Meta Compiler System for the Univac 1108 and General Electric 645, University of Utah Technical Report RADC-TR-69-83. [4] Spirit 2.5.5. https://www.boost.org/doc/libs/1_67_0/libs/spirit/doc/html/index.html 12.12.2019. [5] Lesk, M.E.; Schmidt, E. “Lex – A Lexical Analyzer Generator”. Retrieved August 16, 2010. [6] Levine, John R.; Mason, Tony; Brown, Doug (1992). lex & yacc (2 ed.). O'Reilly. pp. 1–2. ISBN 1-56592-000-7. [7] The LLVM Compiler Infrastructure Project. Retrieved March 11, 2016. [8] Melnyk, A., Salo, A., Klymenko, V., Tsyhylyk, L. Chameleon – system for specialized processors high-level synthesis, Scientifictechnical magazine of National Aerospace University “KhAI”, Kharkiv, 2009. Nо. 5, P. 189–195. [9] S.-I. Lee, T. Johnson, and R. Eigenmann. Cetus – an extensible compiler infrastructure for source-to-source transformation. In Proc. Workshops on Languages and Compilers for Parallel Computing, 2003. [10] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: A compiler framework for automatic translation and optimization. In Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2009. [11] Y. Liu, E. Z. Zhang, amd X. Shen. A Cross-Input Adaptive Framework for GPU Program Optimization. In Proc. IEEE International Parallel & Distributed Processing Symposium, 2009. [12] M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sadayappan. Automatic Data Movement and Computation Mapping for Multi-level Parallel Architectures with Explicitly Managed Memories. In Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2008. [13] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative optimization in the polyhedral mode: part I, on dimensional time. In Proc. International Symposium on Code Generation and Optimization, 2007. [14] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf, and K. Yelick. Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures, in Proceedings of the 2008 ACM/IEEE conference on Supercomputing, 2008, p. 4. [15] J. Ansel, Y. L. W. ans Cy Chan, M. Olszewski, A. Edelman, and S. Amarasinghe. Language and compiler support for auto-tuning variable-accuracy algorithms, in The International Symposium on Code Generation and Optimization, ser. CGO ’11, 2011. [16] J. Kurzak, H. Anzt, M. Gates, and J. Dongarra. Implementation and tuning of batched Cholesky factorization and solve for NVIDIA GPUs, IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 7, 2016. [17] A. Magni, C. Dubach, and M. O’Boyle. Automatic optimization of thread-coarsening for graphics processors, in Proceedings of the 23rd International Conference on Parallel Architectures and Compilation, ser. PACT ’14, 2014, pp. 455–466. [18] S. Unkule, C. Shaltz, and A. Qasem. Automatic restructuring of GPU kernels for exploiting inter-thread data locality, in Proceedings of the 21st International Conference on Compiler Construction, ser. CC’12, 2012, pp. 21–40. [19] Y. Yang, P. Xiang, J. Kong, M. Mantor, and H. Zhou. A unified optimizing compiler framework for different gpgpu architectures, ACM Trans. Archit. Code Optim., vol. 9, no. 2, pp. 9:1–9:33, 2012. [20] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis & transformation, in Proceedings of the International Symposium on Code Generation and Optimization: Feedback directed and Runtime Optimization, ser. CGO ’04, 2004. [21] F. Bodin, T. Kisuki, P. Knijnenburg, M. O’Boyle, and E. Rohou. Iterative compilation in a non-linear optimisation space, in Workshop on Profile and Feedback-Directed Compilation, 1998. [22] P. M. Knijnenburg, T. Kisuki, and M. F. O’Boyle. Combined selection of tile sizes and unroll factors using iterative compilation, The Journal of Supercomputing, vol. 24, no. 1, pp. 43–67, 2003. [23] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams. Using machine learning to focus the iterative optimization, in Proceedings of the International Symposium on Code Generation and Optimization, ser. CGO ’06, 2006, pp. 295–305. |
References (International): | [1] Aho, Sethi, Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley, 1986. ISBN 0-201-10088-6. [2] Peter Mosses. SIS: A Compiler-Generator System Using Denotational Semantics, Report 78-4-3, Dept. of Computer Science, University of Aarhus, Denmark, June 1978. [3] C. Stephen Carr, David A. Luther, Sherian Erdmann, The TREEMETA Compiler-Compiler System: A Meta Compiler System for the Univac 1108 and General Electric 645, University of Utah Technical Report RADC-TR-69-83. [4] Spirit 2.5.5. https://www.boost.org/doc/libs/1_67_0/libs/spirit/doc/html/index.html 12.12.2019. [5] Lesk, M.E.; Schmidt, E. "Lex – A Lexical Analyzer Generator". Retrieved August 16, 2010. [6] Levine, John R.; Mason, Tony; Brown, Doug (1992). lex & yacc (2 ed.). O'Reilly. pp. 1–2. ISBN 1-56592-000-7. [7] The LLVM Compiler Infrastructure Project. Retrieved March 11, 2016. [8] Melnyk, A., Salo, A., Klymenko, V., Tsyhylyk, L. Chameleon – system for specialized processors high-level synthesis, Scientifictechnical magazine of National Aerospace University "KhAI", Kharkiv, 2009. No. 5, P. 189–195. [9] S.-I. Lee, T. Johnson, and R. Eigenmann. Cetus – an extensible compiler infrastructure for source-to-source transformation. In Proc. Workshops on Languages and Compilers for Parallel Computing, 2003. [10] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: A compiler framework for automatic translation and optimization. In Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2009. [11] Y. Liu, E. Z. Zhang, amd X. Shen. A Cross-Input Adaptive Framework for GPU Program Optimization. In Proc. IEEE International Parallel & Distributed Processing Symposium, 2009. [12] M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sadayappan. Automatic Data Movement and Computation Mapping for Multi-level Parallel Architectures with Explicitly Managed Memories. In Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2008. [13] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative optimization in the polyhedral mode: part I, on dimensional time. In Proc. International Symposium on Code Generation and Optimization, 2007. [14] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf, and K. Yelick. Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures, in Proceedings of the 2008 ACM/IEEE conference on Supercomputing, 2008, p. 4. [15] J. Ansel, Y. L. W. ans Cy Chan, M. Olszewski, A. Edelman, and S. Amarasinghe. Language and compiler support for auto-tuning variable-accuracy algorithms, in The International Symposium on Code Generation and Optimization, ser. CGO ’11, 2011. [16] J. Kurzak, H. Anzt, M. Gates, and J. Dongarra. Implementation and tuning of batched Cholesky factorization and solve for NVIDIA GPUs, IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 7, 2016. [17] A. Magni, C. Dubach, and M. O’Boyle. Automatic optimization of thread-coarsening for graphics processors, in Proceedings of the 23rd International Conference on Parallel Architectures and Compilation, ser. PACT ’14, 2014, pp. 455–466. [18] S. Unkule, C. Shaltz, and A. Qasem. Automatic restructuring of GPU kernels for exploiting inter-thread data locality, in Proceedings of the 21st International Conference on Compiler Construction, ser. CC’12, 2012, pp. 21–40. [19] Y. Yang, P. Xiang, J. Kong, M. Mantor, and H. Zhou. A unified optimizing compiler framework for different gpgpu architectures, ACM Trans. Archit. Code Optim., vol. 9, no. 2, pp. 9:1–9:33, 2012. [20] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis & transformation, in Proceedings of the International Symposium on Code Generation and Optimization: Feedback directed and Runtime Optimization, ser. CGO ’04, 2004. [21] F. Bodin, T. Kisuki, P. Knijnenburg, M. O’Boyle, and E. Rohou. Iterative compilation in a non-linear optimisation space, in Workshop on Profile and Feedback-Directed Compilation, 1998. [22] P. M. Knijnenburg, T. Kisuki, and M. F. O’Boyle. Combined selection of tile sizes and unroll factors using iterative compilation, The Journal of Supercomputing, vol. 24, no. 1, pp. 43–67, 2003. [23] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams. Using machine learning to focus the iterative optimization, in Proceedings of the International Symposium on Code Generation and Optimization, ser. CGO ’06, 2006, pp. 295–305. |
Content type: | Article |
Appears in Collections: | Advances In Cyber-Physical Systems. – 2019. – Vol. 4, No. 2 |
File | Description | Size | Format | |
---|---|---|---|---|
19v4n2_Melnyk_A-Simple_Universal_Translator_105-109.pdf | 238.56 kB | Adobe PDF | View/Open | |
19v4n2_Melnyk_A-Simple_Universal_Translator_105-109__COVER.png | 511.61 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.