Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52233
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMelnyk, Anatoliy-
dc.contributor.authorKozak, Nazar-
dc.date.accessioned2020-06-16T08:12:18Z-
dc.date.available2020-06-16T08:12:18Z-
dc.date.created2019-02-26-
dc.date.issued2019-02-26-
dc.identifier.citationMelnyk A. Simple Universal Translator as an Alternative Compiler-Compiler / Anatoliy Melnyk, Nazar Kozak // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 4. — No 2. — P. 105–109.-
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52233-
dc.description.abstractThis article deals with ways of how to implement a simple universal translator. Such universal translator may be an alternative to the compiler-compiler.-
dc.format.extent105-109-
dc.language.isoen-
dc.publisherВидавництво Львівської політехніки-
dc.publisherLviv Politechnic Publishing House-
dc.relation.ispartofAdvances in Cyber-Physical Systems, 2 (4), 2019-
dc.relation.ispartofAdvances in Cyber-Physical Systems, 2 (4), 2019-
dc.relation.urihttps://www.boost.org/doc/libs/1_67_0/libs/spirit/doc/html/index.html-
dc.subjectcompiler-compiler-
dc.subjectuniversal translator-
dc.subjectBackus–Naur form-
dc.titleSimple Universal Translator as an Alternative Compiler-Compiler-
dc.typeArticle-
dc.rights.holder© Національний університет “Львівська політехніка”, 2019-
dc.rights.holder© Melnyk A., Kozak N., 2019-
dc.contributor.affiliationLviv Polytechnic National University-
dc.format.pages5-
dc.identifier.citationenMelnyk A. Simple Universal Translator as an Alternative Compiler-Compiler / Anatoliy Melnyk, Nazar Kozak // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 4. — No 2. — P. 105–109.-
dc.relation.references[1] Aho, Sethi, Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley, 1986. ISBN 0-201-10088-6.-
dc.relation.references[2] Peter Mosses. SIS: A Compiler-Generator System Using Denotational Semantics, Report 78-4-3, Dept. of Computer Science, University of Aarhus, Denmark, June 1978.-
dc.relation.references[3] C. Stephen Carr, David A. Luther, Sherian Erdmann, The TREEMETA Compiler-Compiler System: A Meta Compiler System for the Univac 1108 and General Electric 645, University of Utah Technical Report RADC-TR-69-83.-
dc.relation.references[4] Spirit 2.5.5. https://www.boost.org/doc/libs/1_67_0/libs/spirit/doc/html/index.html 12.12.2019.-
dc.relation.references[5] Lesk, M.E.; Schmidt, E. “Lex – A Lexical Analyzer Generator”. Retrieved August 16, 2010.-
dc.relation.references[6] Levine, John R.; Mason, Tony; Brown, Doug (1992). lex & yacc (2 ed.). O'Reilly. pp. 1–2. ISBN 1-56592-000-7.-
dc.relation.references[7] The LLVM Compiler Infrastructure Project. Retrieved March 11, 2016.-
dc.relation.references[8] Melnyk, A., Salo, A., Klymenko, V., Tsyhylyk, L. Chameleon – system for specialized processors high-level synthesis, Scientifictechnical magazine of National Aerospace University “KhAI”, Kharkiv, 2009. Nо. 5, P. 189–195.-
dc.relation.references[9] S.-I. Lee, T. Johnson, and R. Eigenmann. Cetus – an extensible compiler infrastructure for source-to-source transformation. In Proc. Workshops on Languages and Compilers for Parallel Computing, 2003.-
dc.relation.references[10] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: A compiler framework for automatic translation and optimization. In Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2009.-
dc.relation.references[11] Y. Liu, E. Z. Zhang, amd X. Shen. A Cross-Input Adaptive Framework for GPU Program Optimization. In Proc. IEEE International Parallel & Distributed Processing Symposium, 2009.-
dc.relation.references[12] M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sadayappan. Automatic Data Movement and Computation Mapping for Multi-level Parallel Architectures with Explicitly Managed Memories. In Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2008.-
dc.relation.references[13] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative optimization in the polyhedral mode: part I, on dimensional time. In Proc. International Symposium on Code Generation and Optimization, 2007.-
dc.relation.references[14] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf, and K. Yelick. Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures, in Proceedings of the 2008 ACM/IEEE conference on Supercomputing, 2008, p. 4.-
dc.relation.references[15] J. Ansel, Y. L. W. ans Cy Chan, M. Olszewski, A. Edelman, and S. Amarasinghe. Language and compiler support for auto-tuning variable-accuracy algorithms, in The International Symposium on Code Generation and Optimization, ser. CGO ’11, 2011.-
dc.relation.references[16] J. Kurzak, H. Anzt, M. Gates, and J. Dongarra. Implementation and tuning of batched Cholesky factorization and solve for NVIDIA GPUs, IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 7, 2016.-
dc.relation.references[17] A. Magni, C. Dubach, and M. O’Boyle. Automatic optimization of thread-coarsening for graphics processors, in Proceedings of the 23rd International Conference on Parallel Architectures and Compilation, ser. PACT ’14, 2014, pp. 455–466.-
dc.relation.references[18] S. Unkule, C. Shaltz, and A. Qasem. Automatic restructuring of GPU kernels for exploiting inter-thread data locality, in Proceedings of the 21st International Conference on Compiler Construction, ser. CC’12, 2012, pp. 21–40.-
dc.relation.references[19] Y. Yang, P. Xiang, J. Kong, M. Mantor, and H. Zhou. A unified optimizing compiler framework for different gpgpu architectures, ACM Trans. Archit. Code Optim., vol. 9, no. 2, pp. 9:1–9:33, 2012.-
dc.relation.references[20] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis & transformation, in Proceedings of the International Symposium on Code Generation and Optimization: Feedback directed and Runtime Optimization, ser. CGO ’04, 2004.-
dc.relation.references[21] F. Bodin, T. Kisuki, P. Knijnenburg, M. O’Boyle, and E. Rohou. Iterative compilation in a non-linear optimisation space, in Workshop on Profile and Feedback-Directed Compilation, 1998.-
dc.relation.references[22] P. M. Knijnenburg, T. Kisuki, and M. F. O’Boyle. Combined selection of tile sizes and unroll factors using iterative compilation, The Journal of Supercomputing, vol. 24, no. 1, pp. 43–67, 2003.-
dc.relation.references[23] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams. Using machine learning to focus the iterative optimization, in Proceedings of the International Symposium on Code Generation and Optimization, ser. CGO ’06, 2006, pp. 295–305.-
dc.relation.referencesen[1] Aho, Sethi, Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley, 1986. ISBN 0-201-10088-6.-
dc.relation.referencesen[2] Peter Mosses. SIS: A Compiler-Generator System Using Denotational Semantics, Report 78-4-3, Dept. of Computer Science, University of Aarhus, Denmark, June 1978.-
dc.relation.referencesen[3] C. Stephen Carr, David A. Luther, Sherian Erdmann, The TREEMETA Compiler-Compiler System: A Meta Compiler System for the Univac 1108 and General Electric 645, University of Utah Technical Report RADC-TR-69-83.-
dc.relation.referencesen[4] Spirit 2.5.5. https://www.boost.org/doc/libs/1_67_0/libs/spirit/doc/html/index.html 12.12.2019.-
dc.relation.referencesen[5] Lesk, M.E.; Schmidt, E. "Lex – A Lexical Analyzer Generator". Retrieved August 16, 2010.-
dc.relation.referencesen[6] Levine, John R.; Mason, Tony; Brown, Doug (1992). lex & yacc (2 ed.). O'Reilly. pp. 1–2. ISBN 1-56592-000-7.-
dc.relation.referencesen[7] The LLVM Compiler Infrastructure Project. Retrieved March 11, 2016.-
dc.relation.referencesen[8] Melnyk, A., Salo, A., Klymenko, V., Tsyhylyk, L. Chameleon – system for specialized processors high-level synthesis, Scientifictechnical magazine of National Aerospace University "KhAI", Kharkiv, 2009. No. 5, P. 189–195.-
dc.relation.referencesen[9] S.-I. Lee, T. Johnson, and R. Eigenmann. Cetus – an extensible compiler infrastructure for source-to-source transformation. In Proc. Workshops on Languages and Compilers for Parallel Computing, 2003.-
dc.relation.referencesen[10] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: A compiler framework for automatic translation and optimization. In Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2009.-
dc.relation.referencesen[11] Y. Liu, E. Z. Zhang, amd X. Shen. A Cross-Input Adaptive Framework for GPU Program Optimization. In Proc. IEEE International Parallel & Distributed Processing Symposium, 2009.-
dc.relation.referencesen[12] M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sadayappan. Automatic Data Movement and Computation Mapping for Multi-level Parallel Architectures with Explicitly Managed Memories. In Proc. ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2008.-
dc.relation.referencesen[13] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative optimization in the polyhedral mode: part I, on dimensional time. In Proc. International Symposium on Code Generation and Optimization, 2007.-
dc.relation.referencesen[14] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf, and K. Yelick. Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures, in Proceedings of the 2008 ACM/IEEE conference on Supercomputing, 2008, p. 4.-
dc.relation.referencesen[15] J. Ansel, Y. L. W. ans Cy Chan, M. Olszewski, A. Edelman, and S. Amarasinghe. Language and compiler support for auto-tuning variable-accuracy algorithms, in The International Symposium on Code Generation and Optimization, ser. CGO ’11, 2011.-
dc.relation.referencesen[16] J. Kurzak, H. Anzt, M. Gates, and J. Dongarra. Implementation and tuning of batched Cholesky factorization and solve for NVIDIA GPUs, IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 7, 2016.-
dc.relation.referencesen[17] A. Magni, C. Dubach, and M. O’Boyle. Automatic optimization of thread-coarsening for graphics processors, in Proceedings of the 23rd International Conference on Parallel Architectures and Compilation, ser. PACT ’14, 2014, pp. 455–466.-
dc.relation.referencesen[18] S. Unkule, C. Shaltz, and A. Qasem. Automatic restructuring of GPU kernels for exploiting inter-thread data locality, in Proceedings of the 21st International Conference on Compiler Construction, ser. CC’12, 2012, pp. 21–40.-
dc.relation.referencesen[19] Y. Yang, P. Xiang, J. Kong, M. Mantor, and H. Zhou. A unified optimizing compiler framework for different gpgpu architectures, ACM Trans. Archit. Code Optim., vol. 9, no. 2, pp. 9:1–9:33, 2012.-
dc.relation.referencesen[20] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis & transformation, in Proceedings of the International Symposium on Code Generation and Optimization: Feedback directed and Runtime Optimization, ser. CGO ’04, 2004.-
dc.relation.referencesen[21] F. Bodin, T. Kisuki, P. Knijnenburg, M. O’Boyle, and E. Rohou. Iterative compilation in a non-linear optimisation space, in Workshop on Profile and Feedback-Directed Compilation, 1998.-
dc.relation.referencesen[22] P. M. Knijnenburg, T. Kisuki, and M. F. O’Boyle. Combined selection of tile sizes and unroll factors using iterative compilation, The Journal of Supercomputing, vol. 24, no. 1, pp. 43–67, 2003.-
dc.relation.referencesen[23] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams. Using machine learning to focus the iterative optimization, in Proceedings of the International Symposium on Code Generation and Optimization, ser. CGO ’06, 2006, pp. 295–305.-
dc.citation.journalTitleAdvances in Cyber-Physical Systems-
dc.citation.issue2-
dc.citation.spage105-
dc.citation.epage109-
dc.coverage.placenameЛьвів-
dc.coverage.placenameLviv-
Appears in Collections:Advances In Cyber-Physical Systems. – 2019. – Vol. 4, No. 2

Files in This Item:
File Description SizeFormat 
19v4n2_Melnyk_A-Simple_Universal_Translator_105-109.pdf238.56 kBAdobe PDFView/Open
19v4n2_Melnyk_A-Simple_Universal_Translator_105-109__COVER.png511.61 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.