
ADVANCES IN CYBER-PHYSICAL SYSTEMS
Vol. 4, No. 2, 2019

SIMPLE UNIVERSAL TRANSLATOR AS AN ALTERNATIVE
COMPILER-COMPILER

Anatoliy Melnyk, Nazar Kozak

Lviv Polytechnic National University, 12, S. Bandery Str., Lviv, 79013, Ukraine.
Authors’ e-mail: aomelnyk@lp.edu.ua, nazar.kozak@mail.com

Submitted on 28.11.2019

© Melnyk A., Kozak N., 2019

Abstract: This article deals with ways of how to
implement a simple universal translator. Such universal
translator may be an alternative to the compiler-compiler.

Index Terms: compiler-compiler, universal translator,
Backus–Naur form.

I. INTRODUCTION
When working on automated code generators for

graphics accelerators, there is often a need to translate
one presentation of data or program code into another.
Accordingly, there is a need to develop software tools
for these purposes. In most cases, it was only necessary
to map the constructions of one high-level language into
another, since all parallelization problems are solved
separately. Therefore, to simplify the solution of such
problems, we decided to develop the universal translator.

Such universal translator is an analogy of the
compiler-compiler and actually implements its
functionality. The advantage of such translator is its
prescription for translating the language constructions of
one high-level language into another without the
compilation of additional means.

II. OVERVIEW OF EXISTING DECISIONS
Together with the theory of compiler creation [1],

the concept of compiler-compiler creation [2, 3]
emerged. In practice, compiler-compilers are not as com-
monly used as compilers themselves. This is primarily
due to the fact that a small set of programming languages
is used in each specific period of history, so developing
automation tools to create compiler development tools
seems like an inappropriate task. At the same time, the
compiler-compiler implementation tools still exist and
can be considered.

Among the existing solutions that can serve as tools
for implementing the compiler-compilers there are
several software libraries.

First solution can be Sprit [4] from the Boost
library. This tool is particularly well suited for writing
simple parsers. The scope of this solution is to write text
information analysis systems.

Lex [5] is another tool for this purpose. It is well
suited for the writing lexical analyzers. It is often used
with Yacc [6], which is designed to perform parsing.
GNU Bizon is also used for parsing.

All these tools have partial functionality and are
often shared.

Completely different class of such tools can be
attributed to LLVM (Low Level Virtual Machine) [7].
This solution, unlike the previous ones, has a complete
set of tools. Many modern compilers are built on the
basis of LLVM. The disadvantage of LLVM is that this
solution is tied to its internally represented IR
(intermediate representation).

An alternative to such means is further considered
universal translator aimed at conversion of one high-
level code to another. Such translation will be sufficient,
since this translator will serve to display the calculations
obtained as a result of high-level synthesis [8]. Such a
concept is close to [9, 10, 11, 12] and resembles
multifaceted optimization [13]. Such translation can also
be used to optimize the code itself [14, 15, 16] or to
optimize code execution for a graphical accelerator [17,
18]. Although there are other optimization approaches
[19, 20, 21, 22] for which even machine learning is
applied [23], such approaches do not use code
parallelization.

III. UNIVERSAL TRANSLATOR
Fig. 1 shows the principle of compiler-compiler and

universal translator using. Both solutions are used to
solve the same problem, but differ in principle. The
compiler-compiler allows to generate a compiler
program that needs to be compiled further. During
generation, configuration files will be used to describe
the target language. In the case of the universal
translator, this approach is not applied, since the
universal translator itself will be the target compiler. The
configuration files, which are used in conjunction with
the source code (Fig. 1(b)) will be an input for it.

Although compiler-compiler has more optimization
capabilities, the universal translator can be used as a
single monolithic module of the system. It fits in well
with the concept of its use for CUDA automatic code
generation systems.

The proposed universal translator is used to
translate one high-level representation into another, but
can also be used to generate assembler code (Fig. 2). All
of the resulting components are integrated with the suite
of different computer system programming tools.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Anatoliy Melnyk, Nazar Kozak 106

Target Compiler

BNF and
other
config

Compiler
source
code

Target
source
code

Universal
translator

BNF and
other
config

Target
source
code

Target
code

General
compiler

Sets of compiler-
compiler tools

Target
code

 а b

Fig. 1. Compiler-compiler (a) and universal translator (b)

Various programming tools for com puter sy stems

C-like
frames

Assembler
subprograms

VHDL
frames

Input
code

frames

Universal
translator

Fig. 2. Components of programming environment

BNF (Backus – Naur form) is often used to express
the input language syntax. A BNF specification is a set
of derivation rules (Listing 1).

Listing 1

<body_for_true> ::= 'THEN' <statement> ';' Input-language

As with the compiler-compiler concept, the input
code can be specified with BNF notations. The universal

translator discussed here has a feature that code genera-
ion rules can also be specified using BNF (Listing 2).
For this application, two additional attributes are
specified indicating the sequence of the rule application.

Listing 2
<body_for_true>.<PRE_RODUCTION> ::= "{"
<body_for_true>.<POST_RODUCTION> ::= "}"

C-like

<body_for_true>.<PRE_RODUCTION> ::=
<body_for_true>.<POST_RODUCTION> ::=
"jmp label%d_point_end;\r\nlabel%d_body_for_false:\r\n"

Assembly

Fig. 3 shows the general structure of the proposed

translator. Several intermediate views are used to store
the translator's output of each previous step. The
peculiarity of the system is using of the same tables for
storing input language notation and corresponding
notation for output code generation. Since the syntax of
the proposed universal translator is based on recursive
descent, the stack in explicit form is not used here.

Analizer

Token Table

Production
Table

Processed
Token Table

Token
Sequence

Table

Input code

Output code

Fig. 3. Structure of the universal translator

At the beginning, the token table initializes the
processed token table. Then, when processing the input
code, a table of consecutive tokens is filled. Each time
one accesses the table, all the identifiers in the tables are
indexed starting from the next. This achieves the
simplicity of presentation of all syntactic constructions
of the input language.

When generating source code, the production table
is analyzed. The rules in this table can be of two types.
The first type is applied before processing the
corresponding syntax, and the second – after.

The recursion depth is provided. The greater the
depth of recursion is set, the more one compiler passage
is analyzed for language constructions.

IV. UNIVERSAL TRANSLATOR
IMPLEMENTING

The structure listed in Listing 3 is used to store
notations. This structure stores the name of the tokens,
the token attribute, and the set of notation tokens, which
also include the attributes.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Simple Universal Translator as an Alternative Compiler-Compiler 107

Listing 3
struct SourceNotations{
 char token[MAX_TOKEN_LENGTH_T];
 unsigned int atribute;
 struct {
 char token[MAX_TOKEN_LENGTH_T];
 unsigned int atribute;
 } notationTokens[MAX_TOKENS4TOKEN_COUNT_T];
 unsigned int assignationType;
};

The following notations may have the attributes of
either a sequential rule or rules to select one of the valid
values:

• SEQUENCE_PATERN_TYPE_TA
• VARIATIVE_PATERN_TYPE_TA
Notations for code generation also include

attributes that indicate the sequence of application of the
rules:

• PRE_RODUCTION_FOR_ABSTRACT_TOKEN_TYPE
• POST_RODUCTION_FOR_ABSTRACT_TOKEN_TYPE
Listing 4 gives an example of defining such a

notation to describe input grammar.

Listing 4
{ "<body_for_true>", ABSTRACT_TOKEN_TYPE |
SEQUENCE_PATERN_TYPE_TA, { { "~~", 0 }, { "THEN",
KEYWORD_TOKEN_TYPE }, { "<statement>", ABSTRACT_TOKEN_TYPE |
REPEAT_TOKEN_ATRIBUTE_TYPE_TA | MANDATORY_TOKEN_ATRIBUTE_TYPE_TA
}, { ";", KEYWORD_TOKEN_TYPE }, { "", 0 } } }

Listing 5 shows a similar notation for code ge-
eration.

Listing 5
{ "<body_for_true>", ABSTRACT_TOKEN_TYPE |
SEQUENCE_PATERN_TYPE_TA | POST_RODUCTION_FOR_ABSTRACT_TOKEN_TYPE,
{ { "~~", 0 }, { " jmp label%d_point_end;\r\n
label%d_body_for_false:\r\n", 0 }, { "", 0 } } }

The Token Table structure (Listing 6) is used to

describe the scanned tokens.

Listing 6
struct TokensTable {
 struct {
 unsigned int tokenId;
 unsigned int atribute;
 } notationTokens[MAX_TOKENS4TOKEN_COUNT_T];
 char * tokenStr;
 unsigned int recordType;
 void * tokenValue;
 unsigned int elementarPoint;
 unsigned int assignationType;
} *tokensTable, *processedTokensTable, *productionsTable;

This data structure will be applied three times:
• Token Table array – for input tokens;
• Processed Token Table array – for current

processed tokens;
• Production Table array – for tokens to be used

for processed data.
Listing 7 shows a structure that will store the

sequence of tokens that will display the source code.
This table together with the token description table is
obtained after the lexical analysis.

Listing 7
struct TokensSequenceTable{
 unsigned int tokenId;
 unsigned int row;
 unsigned int column;
 unsigned int scaner_marker;
 unsigned int lexer_marker;
 unsigned int syntaxer_marker;
 unsigned int semantixer_marker;
 unsigned int pragmatixer_marker;
 unsigned int synthesizer_marker;
 unsigned int flags;
 unsigned int error;
 struct {
 unsigned int tokenId;
 char * tokenStr;
 } assignedAbstractToken;
} *tokensSequenceTable;

As parser work is versatile for parsing and code

generation, these records can be stored in a single array.
The production itself is implemented with the

function of the prototype listed in Listing 8.

Listing 8
void makeProductionOut(char ** productionOut,
struct TokensTable * tokensTable,
 unsigned int tokenId4Patern,
 unsigned int unroll_deep_downcounter,
 unsigned int upStageProductionTokenId,
 unsigned int * endPointFilters);

Header generation is implemented separately. Such

headers will be different for different target code.
Therefore, in general, the code generation process
consists of a sequential call for two functions (Listing 9).

Listing 9
makeProductionHeaderOut(&productionOutPtr,
 processedTokensTable,
 processedProgramPatternId,
 MAX_CAPTURE_DEEP,
 0, endPointFilters);
makeProductionOut(&productionOutPtr,
 processedTokensTable,
 processedProgramPatternId,
 MAX_CAPTURE_DEEP,
 0, endPointFilters);

V. APPLICATION
Designed translator is used to present intermediate

data in an acceptable form for their use in the system of
automatic code parallelization on different links of such
system. One of the tasks of such application is using parallel
representation of CUDA cores in one implementation and
VHDL code in implementation for FPGA.

This universal translator can also be used to
generate code that can be used with one of the modern
programming languages. The MASM32 assembler was
selected as the target code to run such functionality. The
script for his work is listed in Listing 10.

Listing 10
@echo off
setlocal
..\..\portable_masm32\masm32p\masm32\bin\ML /c /coff %1.asm
if errorlevel 1 goto terminate
rem link /SUBSYSTEM:CONSOLE
/LIBPATH:..\..\portable_masm32\masm32p\masm32\lib %1.obj
..\..\portable_masm32\masm32p\masm32\bin\link
/SUBSYSTEM:CONSOLE
..\..\portable_masm32\masm32p\masm32\lib\msvcrt.lib %1.obj
if errorLevel 1 goto terminate
echo OK
:terminate
endlocal
EXIT %errorlevel%

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Anatoliy Melnyk, Nazar Kozak 108

Such application implementation involves the use
of the generated code as an add-on software module.
This will allow to implement the programming interface
for different types of programmable systems. There are
various options for integrating such systems based on
MASM32. For this purpose, the environment itself has
been expanded by the large number of modern
programming languages (Fig. 4).

Fig. 4. Set of language tools

For additional functionality, *.bat files that
contained the necessary commands to compile the code
into the appropriate programming languages were used.
See Listing 11 for an example.

Translator has showed correct work for the selected
input data (Fig. 5). All stages of the broadcast are
worked correctly.

Listing 11
setlocal
SET PROJECT_DIR=%CD%
SET BASE_DIR_OFFSET=..\..
SET PATH=%PROJECT_DIR%;%CD%\%BASE_DIR_OFFSET%\ext;%PATH%
SET PATH=%CD%\%BASE_DIR_OFFSET%\MinGW\bin;%PATH%
SET PATH=%CD%\%BASE_DIR_OFFSET%\python\Python27;%PATH%
SET PATH=%CD%\%BASE_DIR_OFFSET%\node\node-v8.9.4-win-x86;%PATH%
SET PYTHON=%CD%\%BASE_DIR_OFFSET%\python\Python27;
xcopy .* %CD%\%BASE_DIR_OFFSET%\node\node-v8.9.4-win-x86 /y /q
cd %CD%\%BASE_DIR_OFFSET%\node\node-v8.9.4-win-x86
CALL node-gyp rebuild
cd %PROJECT_DIR%
rd node_modules /s /q
rd build /s /q
xcopy %CD%\%BASE_DIR_OFFSET%\node\node-v8.9.4-win-
x86\node_modules\bindings node_modules\bindings\ /s /e /y /q
xcopy %CD%\%BASE_DIR_OFFSET%\node\node-v8.9.4-win-x86\build
build\ /s /e /y /q
pause
endlocal

Fig. 5. Processing input code

The possibility of the parallel code using with other
programming languages is considered. It allows its
integration into almost any programming system.

VI. CONCLUSION
During the research, a universal translator was

developed. Such translator with the help of appropriate
notations allows to realize arbitrary transformation of the
intermediate representation.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Simple Universal Translator as an Alternative Compiler-Compiler 109

In general, we can distinguish the following
properties:

• the input language can be set using BNF;
• code generation can also be set using BNF;
• it is possible to generate an intermediate data;
• it is possible to re-optimize the elements.

REFERENCES

[1] Aho, Sethi, Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, 1986. ISBN 0-201-10088-6.

[2] Peter Mosses. SIS: A Compiler-Generator System Using
Denotational Semantics, Report 78-4-3, Dept. of Computer
Science, University of Aarhus, Denmark, June 1978.

[3] C. Stephen Carr, David A. Luther, Sherian Erdmann, The TREE-
META Compiler-Compiler System: A Meta Compiler System for
the Univac 1108 and General Electric 645, University of Utah
Technical Report RADC-TR-69-83.

[4] Spirit 2.5.5. https://www.boost.org/doc/libs/1_67_
0/libs/spirit/doc/html/index.html 12.12.2019.

[5] Lesk, M.E.; Schmidt, E. “Lex – A Lexical Analyzer Generator”.
Retrieved August 16, 2010.

[6] Levine, John R.; Mason, Tony; Brown, Doug (1992). lex & yacc
(2 ed.). O'Reilly. pp. 1–2. ISBN 1-56592-000-7.

[7] The LLVM Compiler Infrastructure Project. Retrieved March 11,
2016.

[8] Melnyk, A., Salo, A., Klymenko, V., Tsyhylyk, L. Chameleon –
system for specialized processors high-level synthesis, Scientific-
technical magazine of National Aerospace University “KhAI”,
Kharkiv, 2009. Nо. 5, P. 189–195.

[9] S.-I. Lee, T. Johnson, and R. Eigenmann. Cetus – an extensible
compiler infrastructure for source-to-source transformation. In
Proc. Workshops on Languages and Compilers for Parallel
Computing, 2003.

[10] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: A
compiler framework for automatic translation and optimization. In
Proc. ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2009.

[11] Y. Liu, E. Z. Zhang, amd X. Shen. A Cross-Input Adaptive
Framework for GPU Program Optimization. In Proc. IEEE
International Parallel & Distributed Processing Symposium, 2009.

[12] M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan. Automatic Data Movement and

Computation Mapping for Multi-level Parallel Architectures with
Explicitly Managed Memories. In Proc. ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, 2008.

[13] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative
optimization in the polyhedral mode: part I, on dimensional time. In
Proc. International Symposium on Code Generation and
Optimization, 2007.

[14] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick. Stencil computation
optimization and auto-tuning on state-of-the-art multicore
architectures, in Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, 2008, p. 4.

[15] J. Ansel, Y. L. W. ans Cy Chan, M. Olszewski, A. Edelman, and
S. Amarasinghe. Language and compiler support for auto-tuning
variable-accuracy algorithms, in The International Symposium on
Code Generation and Optimization, ser. CGO ’11, 2011.

[16] J. Kurzak, H. Anzt, M. Gates, and J. Dongarra. Implementation and
tuning of batched Cholesky factorization and solve for NVIDIA
GPUs, IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 7, 2016.

[17] A. Magni, C. Dubach, and M. O’Boyle. Automatic optimization of
thread-coarsening for graphics processors, in Proceedings of the
23rd International Conference on Parallel Architectures and
Compilation, ser. PACT ’14, 2014, pp. 455–466.

[18] S. Unkule, C. Shaltz, and A. Qasem. Automatic restructuring of
GPU kernels for exploiting inter-thread data locality, in
Proceedings of the 21st International Conference on Compiler
Construction, ser. CC’12, 2012, pp. 21–40.

[19] Y. Yang, P. Xiang, J. Kong, M. Mantor, and H. Zhou. A unified
optimizing compiler framework for different gpgpu architectures,
ACM Trans. Archit. Code Optim., vol. 9, no. 2, pp. 9:1–9:33, 2012.

[20] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation, in Proceedings of the
International Symposium on Code Generation and Optimization:
Feedback directed and Runtime Optimization, ser. CGO ’04, 2004.

[21] F. Bodin, T. Kisuki, P. Knijnenburg, M. O’Boyle, and E. Rohou.
Iterative compilation in a non-linear optimisation space, in
Workshop on Profile and Feedback-Directed Compilation, 1998.

[22] P. M. Knijnenburg, T. Kisuki, and M. F. O’Boyle. Combined
selection of tile sizes and unroll factors using iterative compilation,
The Journal of Supercomputing, vol. 24, no. 1, pp. 43–67, 2003.

[23] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin,
M. F. P. O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams.
Using machine learning to focus the iterative optimization, in
Proceedings of the International Symposium on Code Generation
and Optimization, ser. CGO ’06, 2006, pp. 295–305.

Anatoliy Melnyk has been a
Head of Computer Engineering De-
partment at Lviv Polytechnic National
University since 1994. He graduated
from Lviv Polytechnic Institute with
the Engineer Degree in Computer
Engineering in 1978. In 1985 he
obtained his Ph.D in Computer Sys-
tems at Moscow Power Engine-
ering Institute. In 1992, he received his

D.Sc. degree at the Institute of Modelling Problems in
Power Engineering of the National Academy of Science of
Ukraine. He was recognized for his outstanding contributions
into high-performance computer systems design as a Fellow
Scientific Researcher in 1988. He became a Professor of
Computer Engineering in 1996. From 1982 to 1994 he was a
Head of Department of Signal Processing Systems at Lviv Radio
Engineering Research Institute. From 1994 to 2008 he was a
Scientific Director of the Institute of Measurement and
Computer Technique at Lviv Polytechnic National University.

From 1999 to 2009 he was a Dean of the Department of
Computer and Information Technologies at the Institute of
Business and Perspective Technologies, Lviv, Ukraine. Since
2000 he has served as a President and CEO of Intron ltd. He has
also been a professor at Kielce University of Technology,
University of Information Technology and Management,
Rzeszow, University of Bielsko-Biala, John Paul II Catholic
University of Lublin.

Nazar Kozak was born in 1985
in Ukraine. He received the B.S. and
the M.S. degrees in computer engi-
neering at Lviv Polytechnic National
University in 2007 and 2008. He has
been doing scientific and research
work since 2008. His work resulted in
13 publications. Currently, he is an
assistant proessor at the Computer
Engieering Deparment, Lviv
Polytechnic National University.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

