ADVANCESIN CYBER-PHYSICAL SYSTEMS

Vol. 4, No. 2, 2019

SIMPLE UNIVERSAL TRANSLATOR ASAN ALTERNATIVE
COMPILER-COMPILER

Anatoliy Melnyk, Nazar Kozak

Lviv Polytechnic National University, 12, S Bandery Str., Lviv, 79013, Ukraine.
Authors e-mail: aomelnyk@lp.edu.ua, nazar.kozak@mail.com

Submitted on 28.11.2019
© Menyk A., Kozak N., 2019

Abstract: This article deals with ways of how to
implement a simple universal trandator. Such universal
translator may be an alternative to the compiler-compiler.

Index Terms: compiler-compiler, universal trandator,
Backus-Naur form.

. INTRODUCTION

When working on automated code generators for
graphics accelerators, there is often a need to trandate
one presentation of data or program code into another.
Accordingly, there is a need to develop software tools
for these purposes. In most cases, it was only necessary
to map the congtructions of one high-level language into
another, since all pardldization problems are solved
separately. Therefore, to simplify the solution of such
problems, we decided to devel op the universal trandator.

Such universal trandator is an analogy of the
compiler-compiler and actually implements its
functionality. The advantage of such trandator is its
prescription for trandating the language constructions of
one high-level language into another without the
compilation of additional means.

1. OVERVIEW OF EXISTING DECISIONS

Together with the theory of compiler creation [1],
the concept of compiler-compiler creation [2, 3]
emerged. In practice, compiler-compilers are not as com-
monly used as compilers themsalves. This is primarily
due to the fact that a small set of programming languages
is used in each specific period of history, so developing
automation tools to create compiler development tools
seems like an inappropriate task. At the same time, the
compiler-compiler implementation tools ill exist and
can be considered.

Among the existing solutions that can serve astools
for implementing the compiler-compilers there are
several software libraries.

Firg solution can be Sprit [4] from the Boost
library. This tool is particularly well suited for writing
simple parsers. The scope of this solution is to write text
information anaysis systems.

Lex [5] is another tool for this purpose. It is well
suited for the writing lexical anayzers. It is often used
with Yacc [6], which is designed to perform parsing.
GNU Bizon isalso used for parsing.

All these tools have partia functionality and are
often shared.

Completely different class of such tools can be
attributed to LLVM (Low Level Virtua Machine) [7].
This solution, unlike the previous ones, has a complete
set of tools. Many modern compilers are built on the
basis of LLVM. The disadvantage of LLVM is that this
solution is tied to its internaly represented IR
(intermediate representation).

An alternative to such means is further considered
universal trandator aimed at conversion of one high-
level code to another. Such trandation will be sufficient,
since this trandlator will serve to display the calculations
obtained as a result of high-level synthesis [8]. Such a
concept is close to [9, 10, 11, 12] and resembles
multifaceted optimization [13]. Such trandation can also
be used to optimize the code itself [14, 15, 16] or to
optimize code execution for a graphical acceerator [17,
18]. Although there are other optimization approaches
[19, 20, 21, 22] for which even machine learning is
applied [23], such approaches do not use code
paraldization.

[1I.UNIVERSAL TRANSLATOR

Fig. 1 showsthe principle of compiler-compiler and
universal trandator using. Both solutions are used to
solve the same problem, but differ in principle. The
compiler-compiler alows to generate a compiler
program that needs to be compiled further. During
generation, configuration files will be used to describe
the target language. In the case of the universal
trandator, this approach is not applied, since the
universal trandlator itself will be the target compiler. The
configuration files, which are used in conjunction with
the source code (Fig. 1(b)) will be an input for it.

Although compiler-compiler has more optimization
capabhilities, the universal trandator can be used as a
single monalithic module of the system. It fits in well
with the concept of its use for CUDA automatic code
generation systems.

The proposed universal trandator is used to
trandate one high-level representation into another, but
can also be used to generate assembler code (Fig. 2). All
of the resulting components are integrated with the suite
of different computer system programming tools.

106

BNF and Target
other source
config code

Sets of compiler-
compiler tools

Compiler
source
code

Y

General BNF and Target
compiler other source
config code

l v) \

Target C i Universal
ar, ompiler
g P translator
Y Y
Target Target
code code
a b

Fig. 1. Compiler-compiler (a) and universal trandator (b)

Y
Universal
translator
]
\4 A 4 v
VHDL C-like Assembler
frames frames subprograms

Various programming tools for computer systems

Fig. 2. Components of programming environment

BNF (Backus — Naur form) is often used to express
the input language syntax. A BNF specification is a set
of derivation rules (Listing 1).

Listing 1

[<body_for_true> ::= THEN' <statement>";' [Input-language |

As with the compiler-compiler concept, the input
code can be specified with BNF notations. The universal

Anatoliy Melnyk, Nazar Kozak

trandator discussed here has a feature that code genera-
ion rules can aso be specified using BNF (Listing 2).
For this application, two additiona attributes are
specified indicating the sequence of the rule application.

Listing 2
<body_for_true>.<PRE_RODUCTION> ::= "{" C-like
<body_for_true>.<POST_RODUCTION> ::="}"
<body_for_true>.<PRE_RODUCTION> ::= Assembly

<body_for_true>.<POST_RODUCTION> ::=
"jmp label%d_point_end;\r\nlabel%d_body_for_false:\r\n"

Fig. 3 shows the genera structure of the proposed
trandator. Severa intermediate views are used to store
the trandator's output of each previous step. The
peculiarity of the system is using of the same tables for
storing input language notation and corresponding
notation for output code generation. Since the syntax of
the proposed universal trandator is based on recursive
descent, the stack in explicit form is not used here.

Processed
Token Table Token Table
L Ly
17
Input code >
Analizer < Production
7 Table
Output code
Y
Token
Sequence
Table

Fig. 3. Sructure of the universal trand ator

At the beginning, the token table initidizes the
processed token table. Then, when processing the input
code, a table of consecutive tokens is filled. Each time
one accesses the table, al the identifiersin the tables are
indexed darting from the next. This achieves the
simplicity of presentation of all syntactic constructions
of theinput language.

When generating source code, the production table
is analyzed. The rules in this table can be of two types.
The first type is applied before processing the
corresponding syntax, and the second — after.

The recursion depth is provided. The greater the
depth of recursion is set, the more one compiler passage
isanalyzed for language constructions.

IV.UNIVERSAL TRANSLATOR
IMPLEMENTING

The dructure listed in Listing 3 is used to store
notations. This structure stores the name of the tokens,
the token attribute, and the set of notation tokens, which
also include the attributes.

Smple Universal Trandator as an Alternative Compiler-Compiler

Listing 3

struct SourceNotations{

char token[MAX_TOKEN_LENGTH_T];

unsigned int atribute;

struct {
char token[MAX_TOKEN_LENGTH_T];
unsigned int atribute;

} notationTokens[MAX_TOKENSATOKEN COUNT_T];

unsigned int assignationType;

s

The following notations may have the attributes of
either a sequential rule or rules to select one of the valid
values:

e SEQUENCE PATERN_TYPE_TA

e VARIATIVE_PATERN_TYPE TA

Notations for code generation also include
attributes that indicate the sequence of application of the
rules:

e PRE_RODUCTION_FOR_ABSTRACT_TOKEN_TYPE

e POST_RODUCTION_FOR_ABSTRACT_TOKEN_TYPE

Listing 4 gives an example of defining such a
notation to describe input grammar.

Listing 4

{ "<body_for_true>", ABSTRACT_TOKEN_TYPE |
SEQUENCE_PATERN_TYPE_TA, { { "~~", @ }, { "THEN",
KEYWORD_TOKEN_TYPE }, { "<statement>", ABSTRACT_TOKEN_TYPE |
REPEAT_TOKEN_ATRIBUTE_TYPE_TA | MANDATORY_TOKEN_ATRIBUTE_TYPE_TA
}, { ";", KEYWORD_TOKEN_TYPE }, { "", @ } } }

Listing 5 shows a smilar notation for code ge-
eration.

Liting 5

{ "<body_for_true>", ABSTRACT_TOKEN_TYPE |
SEQUENCE_PATERN_TYPE_TA | POST_RODUCTION_FOR_ABSTRACT_TOKEN_TYPE,
{{"~",0%} {" jmp label%d_point_end;\r\n
label%d_body_for_false:\r\n", @ }, { "", @ } } }

The Token Table structure (Listing 6) is used to
describe the scanned tokens.

Listing 6

struct TokensTable {
struct {
unsigned int tokenId;
unsigned int atribute;
} notationTokens[MAX_TOKENS4TOKEN_COUNT_T];
char * tokenStr;
unsigned int recordType;
void * tokenValue;
unsigned int elementarPoint;
unsigned int assignationType;
} *tokensTable, *processedTokensTable, *productionsTable;

This data structure will be applied three times:

e Token Tablearray —for input tokens;

e Processed Token Table array — for current
processed tokens;

e Production Table array — for tokens to be used
for processed data

Listing 7 shows a structure that will store the
sequence of tokens that will display the source code.
This table together with the token description table is
obtained after thelexical analysis.

107

Listing 7

struct TokensSequenceTable{
unsigned int tokenId;
unsigned int row;
unsigned int column;
unsigned int scaner_marker;
unsigned int lexer_marker;
unsigned int syntaxer_marker;
unsigned int semantixer_marker;
unsigned int pragmatixer_marker;
unsigned int synthesizer_marker;
unsigned int flags;
unsigned int error;
struct {
unsigned int tokenId;
char * tokenStr;
} assignedAbstractToken;
} *tokensSequenceTable;

As parser work is versatile for parsing and code
generation, these records can be stored in a single array.

The production itsdf is implemented with the
function of the prototype listed in Listing 8.

Liting 8

void makeProductionOut(char ** productionOut,
struct TokensTable * tokensTable,
unsigned int tokenId4Patern,
unsigned int unroll_deep_downcounter,
unsigned int upStageProductionTokenId,
unsigned int * endPointFilters);

Header generation is implemented separately. Such
headers will be different for different target code.
Therefore, in general, the code generation process
consists of a sequentia call for two functions (Listing 9).

Liting 9

makeProductionHeaderoOut (&roductionOutPtr,
processedTokensTable,
processedProgramPatternld,
MAX_CAPTURE_DEEP,
0, endPointFilters);
makeProductionOut(&productionOutPtr,
processedTokensTable,
processedProgramPatternld,
MAX_CAPTURE_DEEP,
0, endPointFilters);

V. APPLICATION

Designed trandator is used to present intermediate
data in an acceptable form for their use in the sysem of
automatic code paraldization on different links of such
system. One of the tasks of such application isusing pardld
representation of CUDA cores in one implementation and
VHDL codein implementation for FPGA.

This universal trandator can aso be used to
generate code that can be used with one of the modern
programming languages. The MASM32 assembler was
selected as the target code to run such functionality. The
script for hiswork islisted in Listing 10.

Listing 10

@echo off

setlocal

..\..\portable_masm32\masm32p\masm32\bin\ML /c /coff %1.asm
if errorlevel 1 goto terminate

rem link /SUBSYSTEM:CONSOLE
/LIBPATH:..\..\portable_masm32\masm32p\masm32\1ib %1.obj
..\..\portable_masm32\masm32p\masm32\bin\1link

/SUBSYSTEM: CONSOLE
..\..\portable_masm32\masm32p\masm32\1ib\msvcrt.1lib %1.o0bj
if errorLevel 1 goto terminate

echo OK

:terminate

endlocal

EXIT %errorlevel%

108

Such application implementation involves the use
of the generated code as an add-on software module.
Thiswill allow to implement the programming interface
for different types of programmable systems. There are
various options for integrating such systems based on
MASM32. For this purpose, the environment itself has
been expanded by the large number of modern
programming languages (Fig. 4).

sions Script | Portable modification(v06c) | Window Help

ﬁﬁ @ EXE Run Program
'@ EXE Run Program and watt for console intput

R
JVM: Run compiled Java-code

JVM: Run compiled Java-code and wait for console intput

JVM: Run compiled Java-code from runnanable jar-file

JVM: Run compiled Java-code from runnanable jar-file and wait for press any key
Pyton: Run Pyton-code

Pyton: Run Pyton-code and wait for press any key

Pyton: Run compiled Pyton-code

Pyton: Run compiled Pyton-code and wait for press any key
NodeJ5(v&]: Run JavaScript-code by Node/S

Node/5(v8): Run JavaScript-code by NodelS and wait for press any key
NodelS(v12): Run JavaScript-code by Node/S

Node/S(12): Run JavaScript-code by NodelS and wait for press any key

Node/S(8): Compile C/C++ Addons(by V52013 or earier) and wait for press any key
Node/5(v12): Compile C/C++ Addons(by V52015 or later) and wait for press any key

NodeJ5(v&]: Prepare to use C/C++Addons-N-APT and wait for press any key
Node/S(v12): Prepare to use C/C++Addons-N-APL and wait for press any key

MASM32: Console Build All and wait for press any key
(o Build Go-code(*.go -» *exe) and wait for press any key

Pyton: Compile Pyton-code("py -» *pyc) and wait for press any key
Pyton: Translate Pyton-code to C-code("py - *.c) and wait for press any key
Pyton: Translate Pyton-code to C++-code(".py -» *.cpp)

Java: Compile Java-code(* java -» *.class) and wait for press any key
Java: Create jar-file from compiled Java-code(" class -> * jar)
Java: Decompile compiled Java-code(* class -> *java) and open in editor

Java: Decompile compiled Java-code from jar-file(*.jar -> *java) and open in editor

& 8 R e B 8 R ® % & 8 a8 w§ e e s e s e e s e v w

About portable modification by N. Kozak)
Fig. 4. et of language tools

For additional functionality, *.bat files that
contained the necessary commands to compile the code
into the appropriate programming languages were used.
See Ligting 11 for an example.

Trandator has showed correct work for the selected
input data (Fig. 5). All stages of the broadcast are
worked correctly.

Anatoliy Melnyk, Nazar Kozak

Listing 11

setlocal

SET PROJECT_DIR=%CD%

SET BASE_DIR_OFFSET=..\..

SET PATH=%PROJECT_DIR%;%CD%\%BASE_DIR_OFFSET%\ext ; %PATH%

SET PATH=%CD%\%BASE_DIR_OFFSET%\MinGW\bin ;%PATH%

SET PATH=%CD%\%BASE_DIR_OFFSET%\python\Python27;%PATH%

SET PATH=%CD%\%BASE_DIR_OFFSET%\node\node-v8.9.4-win-x86;%PATH%
SET PYTHON=%CD%\%BASE_DIR_OFFSET%\python\Python27;

xcopy .* %CD%\%BASE_DIR_OFFSET%\node\node-v8.9.4-win-x86 /y /q
cd %CD%\%BASE_DIR_OFFSET%\node\node-v8.9.4-win-x86

CALL node-gyp rebuild

cd %PROJECT_DIR%

rd node_modules /s /q

rd build /s /q

xcopy %CD%\%BASE_DIR_OFFSET%\node\node-v8.9.4-win-
x86\node_modules\bindings node_modules\bindings\ /s /e /y /q
xcopy %CD%\%BASE_DIR_OFFSET%\node\node-v8.9.4-win-x86\build
build\ /s /e /y /q

pause

endlocal

C:\Windows\system32\cmd.exe

Out hinary filename not setted. Used defaule input filename "file2

(COMMENT _NOTATIONS _TYPE:

1C 4802000): <not_end_notations_hlock} ::= /NOT/ %/

2(4808000): <notations_hlock> ::= /% {not_end_notations_hlock> |
LEREM_NOTATIONS _TYPE:

3(5004000): {number} ::=D 11 121314151617 18179
4(5008000): <value> ::= {number> [{<{numbe r)}]

5(5004000): (letter_in_lnuev_case) = a . bicidielf i
6(5004000): {letter_ 1n uppev case> i=fATBICIDIETF 1
70 5008000 : {ident> : {letter_in_upper_i case) {letter 1n_upp|
8(5008008): {label} ::= (letter_in_lover_case} [{{letter_in_low

ABSTRACT _TOKEN_TYPE:
1(4302000): (nnt_end_nutatinns_hluck) = ML/ =/

2 4308000): <notations_hlock) ::= s (nut endmutatmns_hluck) i
3(5IIIIB4IIIIBID):(numheP)::=IIII1.2.3.4.5.6 71819
4(5008000 : {value> ::= {number} [{<number’}]

5C 5004000): {letter_in_lover casey fi=a lh ic e i f 1
6(5004000): {letter_in_wpper_case? ::=f 1 B 1 C EVF i
7(5008000): <ident)> ::i= _ {letter_in_upper_case? {letter_in_upp
§C 5008000): {label» =:= (letter_in_lower_case> [{{letter_in_low
9(4008000): <recursive_descent_end_point> =:= RECURSIVE_DESCENT|
10¢ 4004000): <value_read> ::= {value>

11¢ 4004000): <ident_read> ::= {ident>

12(4004000): {ident_wwite> ::= {ident>

13 4008000): {labeled_point}> ::= {lahel} :

14(4008000): {goto_lahel> ::= GOTQ (lahel>

15¢ 4008000): {progran_name> ::= {ident>

16(4004000): {value_type> ::= INTEGER16

17C 4004000): {declaration_ident} ::= {ident}

18C 4008000): <other_declaration_ident? ::= , (ident?

19C 4008000): <declaration) ::= <value_type> {declaration_ident>
20 4008000): {operation_not} ::= NOT {inseparable_expression}
21(4008000): {and_action? ::= AND {inseparahle_expression?

22¢ 4008000): <or_action? ::= OR (high_prioryty expression?

23C 400B000): <equal_action} ::= == (mddle_pnuryty _expression’
24(4008000z {not_equal_action} i:=¥= (mlddle_prmryty _expressil
25C 4008000): <less_or_equal i actlnn) = ({middle_prioryty_expm
26 400B000): {greater_or_equal_i actmn) = = {niddle_prioryty_e
27 4008000 : {add_action} ii= + (high_prinryty_expressinn)

28C 4008000): <sub_action} ::= - (high_prioryty expression?

29C 400B0O0): <mul_action} ::= * {inseparahle_expression}

30¢ 4008000): <div_action? ::= DIU {inseparahle_expression}

31C 4008000): <mod_action? ::= MOD {inseparahle_expression?

32(4004000): {unary_operation> ::= {operation_not>

pd
1D

Fig. 5. Processing input code

The possihility of the parallel code using with other
programming languages is considered. It allows its
integration into almost any programming system.

VI.CONCLUSION

During the research, a universal trandator was
developed. Such trandator with the help of appropriate
notations allows to realize arbitrary transformation of the
intermediate representation.

Smple Universal Trandator as an Alternative Compiler-Compiler

In genera, we can diginguish the following
properties:
e theinput language can be set using BNF;
e code generation can also be set using BNF;
e itispossibleto generate an intermediate data;
e itispossibleto re-optimize the elements.

REFERENCES

[1] Aho, Sethi, Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesdley, 1986. |SBN 0-201-10088-6.

[2] Peter Mosses. SIS. A Compiler-Generator System Using
Denotational Semantics, Report 78-4-3, Dept. of Computer
Science, University of Aarhus, Denmark, June 1978.

[3] C. Stephen Carr, David A. Luther, Sherian Erdmann, The TREE-
META Compiler-Compiler System: A Meta Compiler System for
the Univac 1108 and Generd Electric 645, University of Utah
Technical Report RADC-TR-69-83.

[4] Spirit 255. https.//www.boost.org/doc/libs/1_67_
0/libg/spirit/doc/html/index.html 12.12.2019.

[5] Lesk, M.E.; Schmidt, E. “Lex — A Lexical Analyzer Generator”.
Retrieved August 16, 2010.

[6] Levine John R.; Mason, Tony; Brown, Doug (1992). lex & yacc
(2 ed.). O'Reilly. pp. 1-2. ISBN 1-56592-000-7.

[7] The LLVM Compiler Infrastructure Project. Retrieved March 11,
2016.

[8] Mdnyk, A., Sdlo, A., Klymenko, V., Tsyhylyk, L. Chameleon —
system for specialized processors high-level synthesis, Scientific-
technical magazine of National Aerospace Universty “KhAl”,
Kharkiv, 2009. No. 5, P. 189-195.

[9] S-l. Lee T. Johnson, and R. Eigenmann. Cetus — an extensible

compiler infrastructure for sourceto-source transformation. In

Proc. Workshops on Languages and Compilers for Parale

Computing, 2003.

S. Lee, S-J. Min, and R. Eigenmann. OpenMP to GPGPU: A

compiler framework for automatic trandation and optimization. In

Proc. ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, 2009.

Y. Liu, E. Z. Zhang, amd X. Shen. A Cross-Input Adaptive

Framework for GPU Program Optimization. In Proc. |EEE

International Parallel & Distributed Processing Symposium, 2009.

M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,

A. Rountev, and P. Sadayappan. Automatic Data Movement and

(10

[11]

(12

Anatoliy Mdnyk has been a
Head of Computer Engineering De-
partment at Lviv Polytechnic Nationa
University since 1994. He graduated
from Lviv Polytechnic Ingtitute with
the Engineer Degree in Computer
Engineering in 1978. In 1985 he
obtained his Ph.D in Computer Sys-
tems & Maoscow Power Engine-
ering Ingtitute. In 1992, he received his

D.Sc. degree at the Ingitute of Moddling Problems in
Power Engineering of the Nationd Academy of Science of
Ukraine. He was recognized for his outstanding contributions
into high-performance computer systems design as a Fellow
Scientific Researcher in 1988. He became a Professor of
Computer Engineering in 1996. From 1982 to 1994 he was a
Head of Department of Signal Processing Systems at Lviv Radio
Engineering Research Ingtitute. From 1994 to 2008 he was a
Scientific Director of the Inditute of Measurement and
Computer Technique at Lviv Polytechnic National University.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

109

Computation Mapping for Multi-level Parallel Architectures with
Explicitly Managed Memories. In Proc. ACM SIGPLAN Sympo-
sum on Principles and Practice of Parallel Programming, 2008.
L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative
optimization in the polyhedral mode: part I, on dimensional time. In
Proc. International Symposum on Code Generation and
Optimization, 2007.

K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yédick. Stencil computation
optimization and auto-tuning on sate-of-the-art multicore
architectures, in Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, 2008, p. 4.

J. Ansd, Y. L. W. ans Cy Chan, M. Olszewski, A. Edelman, and
S. Amarasinghe. Language and compiler support for auto-tuning
variable-accuracy algorithms, in The International Symposium on
Code Generation and Optimization, ser. CGO '11, 2011.

J. Kurzak, H. Anzt, M. Gates, and J. Dongarra. Implementation and
tuning of batched Cholesky factorization and solve for NVIDIA
GPUs, |IEEE Transactions on Paralld and Digtributed Systems,
vol. 27, no. 7, 2016.

A. Magni, C. Dubach, and M. O’'Boyle. Automatic optimization of
thread-coarsening for graphics processors, in Proceedings of the
23rd International Conference on Parallel Architectures and
Compilation, ser. PACT ' 14, 2014, pp. 455-466.

S. Unkule, C. Shaltz, and A. Qasem. Automatic restructuring of
GPU kernds for exploiting inter-thread data locality, in
Proceedings of the 21st International Conference on Compiler
Construction, ser. CC'12, 2012, pp. 21-40.

Y. Yang, P. Xiang, J. Kong, M. Mantor, and H. Zhou. A unified
optimizing compiler framework for different gpgpu architectures,
ACM Trans. Archit. Code Optim., val. 9, no. 2, pp. 9:1-9:33, 2012.
C. Lattner and V. Adve. LLVM: A compilation framework for
lifdlong program analysis & transformation, in Proceedings of the
International Symposium on Code Generation and Optimization:
Feedback directed and Runtime Optimization, ser. CGO ' 04, 2004.
F. Bodin, T. Kisuki, P. Knijnenburg, M. O’'Boyle, and E. Rohou.
Iterative compilation in a non-linear optimisation space, in
Workshop on Profile and Feedback-Directed Compilation, 1998.

P. M. Knijnenburg, T. Kisuki, and M. F. O’'Boyle. Combined
selection of tile sizes and unrall factors using iterative compilation,
The Journal of Supercomputing, vol. 24, no. 1, pp. 43-67, 2003.

F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin,
M. F. P. O'Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams.
Using machine learning to focus the iterative optimization, in
Proceedings of the International Symposium on Code Generation
and Optimization, ser. CGO ' 06, 2006, pp. 295-305.

From 1999 to 2009 he was a Dean of the Department of

Computer and Information Technologies a the Inditute of
Business and Perspective Technologies, Lviv, Ukraine. Since
2000 he has served as a President and CEO of Intron Itd. He has
aso been a professor a Kielce Universty of Technology,

University of

Information Technology and Management,

Rzeszow, University of Bidsko-Biala, John Paul Il Catholic
Universty of Lublin.

Nazar Kozak was born in 1985
in Ukraine. He received the B.S. and
the M.S. degrees in computer engi-
neering a Lviv Polytechnic National
University in 2007 and 2008. He has
been doing scientific and research
work since 2008. His work resulted in
13 publications. Currently, he is an
assigtant proessor a the Computer
Engieering Deparment, Lviv
Polytechnic National University.

