Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/45906
Title: Determination of precipitable water vapour, from the data of aerological and GNSS measurements at european and tropical stations
Other Titles: Визначення осаджуваної водяної пари за даними аерологічних та ГНСС-вимірювань на європейських і тропічних станціях
Authors: Пазяк, М. В.
Paziak, M.
Affiliation: Національний університет “Львівська політехніка”
Lviv Polytechnic National University
Bibliographic description (Ukraine): Paziak M. Determination of precipitable water vapour, from the data of aerological and GNSS measurements at european and tropical stations / M. Paziak // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 89. — P. 20–28.
Bibliographic description (International): Paziak M. Determination of precipitable water vapour, from the data of aerological and GNSS measurements at european and tropical stations / M. Paziak // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 89. — P. 20–28.
Is part of: Геодезія, картографія і аерофотознімання (89), 2019
Geodesy, cartography and aerial photography (89), 2019
Journal/Collection: Геодезія, картографія і аерофотознімання
Volume: 89
Issue Date: 28-Feb-2019
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
UDC: 629.056.88
551.51
Keywords: ГНСС-вимірювання
волога складова зенітної тропосферної затримки
аерологічне зондування
водяна пара
GNSS measurements
wet component of the zenith tropospheric delay
upper-air sounding
water vapour
Number of pages: 9
Page range: 20-28
Start page: 20
End page: 28
URI: https://ena.lpnu.ua/handle/ntb/45906
URL for reference material: http://weather.uwyo.edu/
ftp://cddis.gsfc.nasa.gov/gps/products/troposphere/new/
References (Ukraine): Atmospheric Research Service at the University of
Wyoming, Online Resource: http://weather.uwyo.edu/
upperair/sounding.html
Bevis, M., Businger, S., Herring, T. A., Rocken, C.,
Anthes, R. A., & Ware, R. H. (1992). GPS
meteorology: Remote sensing of atmospheric water
vapor using the Global Positioning System. Journal
of Geophysical Research: Atmospheres, 97(D14), 15787–15801.
Bock, O., Bouin, M.-N., Walpersdorf, A., Lafore, J. P.,
Janicot, S., Guichard, F., & Agusti-Panareda A. (2007).
Comparison of ground-based GPS precipitable water
vapour to independent observations and NWP model
reanalyses over Africa. Quarterly journal of the royal
meteorological society, 133, 2011–2027.
Chen, B., Dai, W., Liu, Z., Wu, L., Kuang, C., & Ao, M.
(2018). Constructing a precipitable water vapor map
from regional GNSS network observations without
collocated meteorological data for weather
forecasting. Atmospheric Measurement Techniques, 11(9), 5153–5166.
Fernández, L. I., Salio, P., Natali, M. P., & Meza, A. M.
(2010). Estimation of precipitable water vapour from
GPS measurements in Argentina: Validation and
qualitative analysis of results. Advances in Space
Research, 46(7), 879–894.
Haase, J., Ge, M., Vedel, H., & Calais, E. (2003). Accuracy
and Variability of GPS Tropospheric Delay
Measurements of Water Vapor in the Western
Mediterranean. American Meteorological Society, 42, 1547–1568.
Julio, A. Castro-Almazán, Gabriel Pérez-Jordán, & Casiana
Muñoz-Tuñón, (2016). A semiempirical error estimation
technique for PWV derived from atmospheric
radiosonde data. Atmos. Meas. Tech., 9, 4759–4781.
Kablak, N. I., Savchuk, S. H. (2012). Distant monitoring of
the atmosphere. Space Science and Technology. 18, 2, 20–25.
Kablak, N. I. (2011 a). Distant monitoring of the water vapor
into the atmosphere by navigation satellite systems.
Geodesy, Cartography and Aerial Photographyv.
Vol.75, 31–35.
Kablak, N. I. (2011 b). Monitoring of the besieged water
vapor on the basis of the processing of GNSS data.
Space Science and Technology. 17, 4, 65–73.
Paziak, M. V., Zablotskyi, F. D. (2018). Features of the
vertical distribution of the wet component of zenith
tropospheric delay in middle and tropical latitudes.
Collection of scientific papers «Modern achievements of
geodesic science and industry», 2 (36), 41–49.
Paziak, M. V., Zablotskyi, F. D. (2015 b). Comparison of the
wet component of zenith tropospheric delay derived
from GNSS observations with corresponding value from
radio soundings. Geodesy, Cartography and Aerial
Photography. 81, 16–24.
Realini, E., Sato, K., Tsuda, T., & Manik, S. (2014). An
observation campaign of precipitable water vapor with
multiple GPS receivers in western Java, Indonesia.
Progress in Earth and Planetary Science, 1:17, 1–20.
Savchuk, M. V., Zablotskyi, F. D. (2014). Estimation of the
hydrostatic component of the zenith tropospheric delay,
from the data of radio soundings. Herald geodesy and
cartography Kyiv: NDIHK, 6, 3–5.
Savchuk, S. H., Zablotskyi, F. D. (2016). Monitoring of the
tropospheric water vapor in the western cross-border
zone of Ukraine. Geodesy, Cartography and Aerial
Photography,. 83, 21–33.
Shilpa Manandhar, Yee HuiLee, Yu Song Meng, Feng
Yuan, & Jin Teong Ong. (2018). GPS-Derived PWV for
Rainfall Nowcasting in Tropical Region. IEEE
transactions on geoscience and remote sensing, 1–10.
Suelynn Choy, Chuan-Sheng Wang, Ta-Kang Yeh, John
Dawson, Minghai Jia, & Yuriy Kuleshov (2015).
Precipitable Water Vapor Estimates in the Australian
Region from Ground-Based GPS Observations.
Advances in Meteorology, Volume, Article ID 95481, 1-14.
Suresh, C. Raju, K. Saha, B. V. Thampi, & K. Parameswaran.
(2007). Empirical model for mean
temperature for Indian zone and estimation of
precipitable water vapor from ground based GPS
measurements. Annales Geophysicae, 25, 1935–1948.
Tropospheric GNSS Observation Files, Online Resource:
ftp://cddis.gsfc.nasa.gov/gps/products/troposphere/new/
Yanxin, T., Lilong, L., & Chaolong, Y. (2013). Empirical
model for mean temperature and assessment of
precipitable water vapor derived from GPS. Geodesy
and Geodynamics, 4 (4), 51–56.
Zablotskyi, F. D., Zablotska, O. F. (2010). An analysis
of zenith tropospheric delay in the Pacific tropical
latitudes. Collection of scientific papers «Modern
achievements of geodesic science and industry»,
Lviv: Liha-Pres, I, 50–55.
Zablotskyi, F. D., Paziak, M. V. (2015 a) An analysis of
zenith tropospheric delay, defined during GNSS
measurements and radio soundings in tropical and
middle latitudes. Herald geodesy and cartography.
Kyiv: NDIHK, 3, 7–9.
Zablotskyi, F., Hresko, Yu., Palianytsia, B. (2017).
Monitoring of water vapor content by radio sounding
data at the Kyiv aerological station and by GNSS
observation data at the GLSV station. Geodesy,
Cartography and Aerial Photography. 85, 13–17.
References (International): Atmospheric Research Service at the University of
Wyoming, Online Resource: http://weather.uwyo.edu/
upperair/sounding.html
Bevis, M., Businger, S., Herring, T. A., Rocken, C.,
Anthes, R. A., & Ware, R. H. (1992). GPS
meteorology: Remote sensing of atmospheric water
vapor using the Global Positioning System. Journal
of Geophysical Research: Atmospheres, 97(D14), 15787–15801.
Bock, O., Bouin, M.-N., Walpersdorf, A., Lafore, J. P.,
Janicot, S., Guichard, F., & Agusti-Panareda A. (2007).
Comparison of ground-based GPS precipitable water
vapour to independent observations and NWP model
reanalyses over Africa. Quarterly journal of the royal
meteorological society, 133, 2011–2027.
Chen, B., Dai, W., Liu, Z., Wu, L., Kuang, C., & Ao, M.
(2018). Constructing a precipitable water vapor map
from regional GNSS network observations without
collocated meteorological data for weather
forecasting. Atmospheric Measurement Techniques, 11(9), 5153–5166.
Fernández, L. I., Salio, P., Natali, M. P., & Meza, A. M.
(2010). Estimation of precipitable water vapour from
GPS measurements in Argentina: Validation and
qualitative analysis of results. Advances in Space
Research, 46(7), 879–894.
Haase, J., Ge, M., Vedel, H., & Calais, E. (2003). Accuracy
and Variability of GPS Tropospheric Delay
Measurements of Water Vapor in the Western
Mediterranean. American Meteorological Society, 42, 1547–1568.
Julio, A. Castro-Almazán, Gabriel Pérez-Jordán, & Casiana
Muñoz-Tuñón, (2016). A semiempirical error estimation
technique for PWV derived from atmospheric
radiosonde data. Atmos. Meas. Tech., 9, 4759–4781.
Kablak, N. I., Savchuk, S. H. (2012). Distant monitoring of
the atmosphere. Space Science and Technology. 18, 2, 20–25.
Kablak, N. I. (2011 a). Distant monitoring of the water vapor
into the atmosphere by navigation satellite systems.
Geodesy, Cartography and Aerial Photographyv.
Vol.75, 31–35.
Kablak, N. I. (2011 b). Monitoring of the besieged water
vapor on the basis of the processing of GNSS data.
Space Science and Technology. 17, 4, 65–73.
Paziak, M. V., Zablotskyi, F. D. (2018). Features of the
vertical distribution of the wet component of zenith
tropospheric delay in middle and tropical latitudes.
Collection of scientific papers "Modern achievements of
geodesic science and industry", 2 (36), 41–49.
Paziak, M. V., Zablotskyi, F. D. (2015 b). Comparison of the
wet component of zenith tropospheric delay derived
from GNSS observations with corresponding value from
radio soundings. Geodesy, Cartography and Aerial
Photography. 81, 16–24.
Realini, E., Sato, K., Tsuda, T., & Manik, S. (2014). An
observation campaign of precipitable water vapor with
multiple GPS receivers in western Java, Indonesia.
Progress in Earth and Planetary Science, 1:17, 1–20.
Savchuk, M. V., Zablotskyi, F. D. (2014). Estimation of the
hydrostatic component of the zenith tropospheric delay,
from the data of radio soundings. Herald geodesy and
cartography Kyiv: NDIHK, 6, 3–5.
Savchuk, S. H., Zablotskyi, F. D. (2016). Monitoring of the
tropospheric water vapor in the western cross-border
zone of Ukraine. Geodesy, Cartography and Aerial
Photography,. 83, 21–33.
Shilpa Manandhar, Yee HuiLee, Yu Song Meng, Feng
Yuan, & Jin Teong Ong. (2018). GPS-Derived PWV for
Rainfall Nowcasting in Tropical Region. IEEE
transactions on geoscience and remote sensing, 1–10.
Suelynn Choy, Chuan-Sheng Wang, Ta-Kang Yeh, John
Dawson, Minghai Jia, & Yuriy Kuleshov (2015).
Precipitable Water Vapor Estimates in the Australian
Region from Ground-Based GPS Observations.
Advances in Meteorology, Volume, Article ID 95481, 1-14.
Suresh, C. Raju, K. Saha, B. V. Thampi, & K. Parameswaran.
(2007). Empirical model for mean
temperature for Indian zone and estimation of
precipitable water vapor from ground based GPS
measurements. Annales Geophysicae, 25, 1935–1948.
Tropospheric GNSS Observation Files, Online Resource:
ftp://cddis.gsfc.nasa.gov/gps/products/troposphere/new/
Yanxin, T., Lilong, L., & Chaolong, Y. (2013). Empirical
model for mean temperature and assessment of
precipitable water vapor derived from GPS. Geodesy
and Geodynamics, 4 (4), 51–56.
Zablotskyi, F. D., Zablotska, O. F. (2010). An analysis
of zenith tropospheric delay in the Pacific tropical
latitudes. Collection of scientific papers "Modern
achievements of geodesic science and industry",
Lviv: Liha-Pres, I, 50–55.
Zablotskyi, F. D., Paziak, M. V. (2015 a) An analysis of
zenith tropospheric delay, defined during GNSS
measurements and radio soundings in tropical and
middle latitudes. Herald geodesy and cartography.
Kyiv: NDIHK, 3, 7–9.
Zablotskyi, F., Hresko, Yu., Palianytsia, B. (2017).
Monitoring of water vapor content by radio sounding
data at the Kyiv aerological station and by GNSS
observation data at the GLSV station. Geodesy,
Cartography and Aerial Photography. 85, 13–17.
Content type: Article
Appears in Collections:Геодезія, картографія і аерофотознімання. – 2019. – Випуск 89

Files in This Item:
File Description SizeFormat 
2019v89_Paziak_M-Determination_of_precipitable_20-28.pdf568.1 kBAdobe PDFView/Open
2019v89_Paziak_M-Determination_of_precipitable_20-28__COVER.png512.47 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.