https://oldena.lpnu.ua/handle/ntb/45906
Title: | Determination of precipitable water vapour, from the data of aerological and GNSS measurements at european and tropical stations |
Other Titles: | Визначення осаджуваної водяної пари за даними аерологічних та ГНСС-вимірювань на європейських і тропічних станціях |
Authors: | Пазяк, М. В. Paziak, M. |
Affiliation: | Національний університет “Львівська політехніка” Lviv Polytechnic National University |
Bibliographic description (Ukraine): | Paziak M. Determination of precipitable water vapour, from the data of aerological and GNSS measurements at european and tropical stations / M. Paziak // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 89. — P. 20–28. |
Bibliographic description (International): | Paziak M. Determination of precipitable water vapour, from the data of aerological and GNSS measurements at european and tropical stations / M. Paziak // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 89. — P. 20–28. |
Is part of: | Геодезія, картографія і аерофотознімання (89), 2019 Geodesy, cartography and aerial photography (89), 2019 |
Journal/Collection: | Геодезія, картографія і аерофотознімання |
Volume: | 89 |
Issue Date: | 28-Feb-2019 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
UDC: | 629.056.88 551.51 |
Keywords: | ГНСС-вимірювання волога складова зенітної тропосферної затримки аерологічне зондування водяна пара GNSS measurements wet component of the zenith tropospheric delay upper-air sounding water vapour |
Number of pages: | 9 |
Page range: | 20-28 |
Start page: | 20 |
End page: | 28 |
URI: | https://ena.lpnu.ua/handle/ntb/45906 |
URL for reference material: | http://weather.uwyo.edu/ ftp://cddis.gsfc.nasa.gov/gps/products/troposphere/new/ |
References (Ukraine): | Atmospheric Research Service at the University of Wyoming, Online Resource: http://weather.uwyo.edu/ upperair/sounding.html Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. Journal of Geophysical Research: Atmospheres, 97(D14), 15787–15801. Bock, O., Bouin, M.-N., Walpersdorf, A., Lafore, J. P., Janicot, S., Guichard, F., & Agusti-Panareda A. (2007). Comparison of ground-based GPS precipitable water vapour to independent observations and NWP model reanalyses over Africa. Quarterly journal of the royal meteorological society, 133, 2011–2027. Chen, B., Dai, W., Liu, Z., Wu, L., Kuang, C., & Ao, M. (2018). Constructing a precipitable water vapor map from regional GNSS network observations without collocated meteorological data for weather forecasting. Atmospheric Measurement Techniques, 11(9), 5153–5166. Fernández, L. I., Salio, P., Natali, M. P., & Meza, A. M. (2010). Estimation of precipitable water vapour from GPS measurements in Argentina: Validation and qualitative analysis of results. Advances in Space Research, 46(7), 879–894. Haase, J., Ge, M., Vedel, H., & Calais, E. (2003). Accuracy and Variability of GPS Tropospheric Delay Measurements of Water Vapor in the Western Mediterranean. American Meteorological Society, 42, 1547–1568. Julio, A. Castro-Almazán, Gabriel Pérez-Jordán, & Casiana Muñoz-Tuñón, (2016). A semiempirical error estimation technique for PWV derived from atmospheric radiosonde data. Atmos. Meas. Tech., 9, 4759–4781. Kablak, N. I., Savchuk, S. H. (2012). Distant monitoring of the atmosphere. Space Science and Technology. 18, 2, 20–25. Kablak, N. I. (2011 a). Distant monitoring of the water vapor into the atmosphere by navigation satellite systems. Geodesy, Cartography and Aerial Photographyv. Vol.75, 31–35. Kablak, N. I. (2011 b). Monitoring of the besieged water vapor on the basis of the processing of GNSS data. Space Science and Technology. 17, 4, 65–73. Paziak, M. V., Zablotskyi, F. D. (2018). Features of the vertical distribution of the wet component of zenith tropospheric delay in middle and tropical latitudes. Collection of scientific papers «Modern achievements of geodesic science and industry», 2 (36), 41–49. Paziak, M. V., Zablotskyi, F. D. (2015 b). Comparison of the wet component of zenith tropospheric delay derived from GNSS observations with corresponding value from radio soundings. Geodesy, Cartography and Aerial Photography. 81, 16–24. Realini, E., Sato, K., Tsuda, T., & Manik, S. (2014). An observation campaign of precipitable water vapor with multiple GPS receivers in western Java, Indonesia. Progress in Earth and Planetary Science, 1:17, 1–20. Savchuk, M. V., Zablotskyi, F. D. (2014). Estimation of the hydrostatic component of the zenith tropospheric delay, from the data of radio soundings. Herald geodesy and cartography Kyiv: NDIHK, 6, 3–5. Savchuk, S. H., Zablotskyi, F. D. (2016). Monitoring of the tropospheric water vapor in the western cross-border zone of Ukraine. Geodesy, Cartography and Aerial Photography,. 83, 21–33. Shilpa Manandhar, Yee HuiLee, Yu Song Meng, Feng Yuan, & Jin Teong Ong. (2018). GPS-Derived PWV for Rainfall Nowcasting in Tropical Region. IEEE transactions on geoscience and remote sensing, 1–10. Suelynn Choy, Chuan-Sheng Wang, Ta-Kang Yeh, John Dawson, Minghai Jia, & Yuriy Kuleshov (2015). Precipitable Water Vapor Estimates in the Australian Region from Ground-Based GPS Observations. Advances in Meteorology, Volume, Article ID 95481, 1-14. Suresh, C. Raju, K. Saha, B. V. Thampi, & K. Parameswaran. (2007). Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements. Annales Geophysicae, 25, 1935–1948. Tropospheric GNSS Observation Files, Online Resource: ftp://cddis.gsfc.nasa.gov/gps/products/troposphere/new/ Yanxin, T., Lilong, L., & Chaolong, Y. (2013). Empirical model for mean temperature and assessment of precipitable water vapor derived from GPS. Geodesy and Geodynamics, 4 (4), 51–56. Zablotskyi, F. D., Zablotska, O. F. (2010). An analysis of zenith tropospheric delay in the Pacific tropical latitudes. Collection of scientific papers «Modern achievements of geodesic science and industry», Lviv: Liha-Pres, I, 50–55. Zablotskyi, F. D., Paziak, M. V. (2015 a) An analysis of zenith tropospheric delay, defined during GNSS measurements and radio soundings in tropical and middle latitudes. Herald geodesy and cartography. Kyiv: NDIHK, 3, 7–9. Zablotskyi, F., Hresko, Yu., Palianytsia, B. (2017). Monitoring of water vapor content by radio sounding data at the Kyiv aerological station and by GNSS observation data at the GLSV station. Geodesy, Cartography and Aerial Photography. 85, 13–17. |
References (International): | Atmospheric Research Service at the University of Wyoming, Online Resource: http://weather.uwyo.edu/ upperair/sounding.html Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. Journal of Geophysical Research: Atmospheres, 97(D14), 15787–15801. Bock, O., Bouin, M.-N., Walpersdorf, A., Lafore, J. P., Janicot, S., Guichard, F., & Agusti-Panareda A. (2007). Comparison of ground-based GPS precipitable water vapour to independent observations and NWP model reanalyses over Africa. Quarterly journal of the royal meteorological society, 133, 2011–2027. Chen, B., Dai, W., Liu, Z., Wu, L., Kuang, C., & Ao, M. (2018). Constructing a precipitable water vapor map from regional GNSS network observations without collocated meteorological data for weather forecasting. Atmospheric Measurement Techniques, 11(9), 5153–5166. Fernández, L. I., Salio, P., Natali, M. P., & Meza, A. M. (2010). Estimation of precipitable water vapour from GPS measurements in Argentina: Validation and qualitative analysis of results. Advances in Space Research, 46(7), 879–894. Haase, J., Ge, M., Vedel, H., & Calais, E. (2003). Accuracy and Variability of GPS Tropospheric Delay Measurements of Water Vapor in the Western Mediterranean. American Meteorological Society, 42, 1547–1568. Julio, A. Castro-Almazán, Gabriel Pérez-Jordán, & Casiana Muñoz-Tuñón, (2016). A semiempirical error estimation technique for PWV derived from atmospheric radiosonde data. Atmos. Meas. Tech., 9, 4759–4781. Kablak, N. I., Savchuk, S. H. (2012). Distant monitoring of the atmosphere. Space Science and Technology. 18, 2, 20–25. Kablak, N. I. (2011 a). Distant monitoring of the water vapor into the atmosphere by navigation satellite systems. Geodesy, Cartography and Aerial Photographyv. Vol.75, 31–35. Kablak, N. I. (2011 b). Monitoring of the besieged water vapor on the basis of the processing of GNSS data. Space Science and Technology. 17, 4, 65–73. Paziak, M. V., Zablotskyi, F. D. (2018). Features of the vertical distribution of the wet component of zenith tropospheric delay in middle and tropical latitudes. Collection of scientific papers "Modern achievements of geodesic science and industry", 2 (36), 41–49. Paziak, M. V., Zablotskyi, F. D. (2015 b). Comparison of the wet component of zenith tropospheric delay derived from GNSS observations with corresponding value from radio soundings. Geodesy, Cartography and Aerial Photography. 81, 16–24. Realini, E., Sato, K., Tsuda, T., & Manik, S. (2014). An observation campaign of precipitable water vapor with multiple GPS receivers in western Java, Indonesia. Progress in Earth and Planetary Science, 1:17, 1–20. Savchuk, M. V., Zablotskyi, F. D. (2014). Estimation of the hydrostatic component of the zenith tropospheric delay, from the data of radio soundings. Herald geodesy and cartography Kyiv: NDIHK, 6, 3–5. Savchuk, S. H., Zablotskyi, F. D. (2016). Monitoring of the tropospheric water vapor in the western cross-border zone of Ukraine. Geodesy, Cartography and Aerial Photography,. 83, 21–33. Shilpa Manandhar, Yee HuiLee, Yu Song Meng, Feng Yuan, & Jin Teong Ong. (2018). GPS-Derived PWV for Rainfall Nowcasting in Tropical Region. IEEE transactions on geoscience and remote sensing, 1–10. Suelynn Choy, Chuan-Sheng Wang, Ta-Kang Yeh, John Dawson, Minghai Jia, & Yuriy Kuleshov (2015). Precipitable Water Vapor Estimates in the Australian Region from Ground-Based GPS Observations. Advances in Meteorology, Volume, Article ID 95481, 1-14. Suresh, C. Raju, K. Saha, B. V. Thampi, & K. Parameswaran. (2007). Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements. Annales Geophysicae, 25, 1935–1948. Tropospheric GNSS Observation Files, Online Resource: ftp://cddis.gsfc.nasa.gov/gps/products/troposphere/new/ Yanxin, T., Lilong, L., & Chaolong, Y. (2013). Empirical model for mean temperature and assessment of precipitable water vapor derived from GPS. Geodesy and Geodynamics, 4 (4), 51–56. Zablotskyi, F. D., Zablotska, O. F. (2010). An analysis of zenith tropospheric delay in the Pacific tropical latitudes. Collection of scientific papers "Modern achievements of geodesic science and industry", Lviv: Liha-Pres, I, 50–55. Zablotskyi, F. D., Paziak, M. V. (2015 a) An analysis of zenith tropospheric delay, defined during GNSS measurements and radio soundings in tropical and middle latitudes. Herald geodesy and cartography. Kyiv: NDIHK, 3, 7–9. Zablotskyi, F., Hresko, Yu., Palianytsia, B. (2017). Monitoring of water vapor content by radio sounding data at the Kyiv aerological station and by GNSS observation data at the GLSV station. Geodesy, Cartography and Aerial Photography. 85, 13–17. |
Content type: | Article |
Appears in Collections: | Геодезія, картографія і аерофотознімання. – 2019. – Випуск 89 |
File | Description | Size | Format | |
---|---|---|---|---|
2019v89_Paziak_M-Determination_of_precipitable_20-28.pdf | 568.1 kB | Adobe PDF | View/Open | |
2019v89_Paziak_M-Determination_of_precipitable_20-28__COVER.png | 512.47 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.