Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/45906
Full metadata record
DC FieldValueLanguage
dc.contributor.authorПазяк, М. В.
dc.contributor.authorPaziak, M.
dc.date.accessioned2020-02-21T08:54:22Z-
dc.date.available2020-02-21T08:54:22Z-
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.identifier.citationPaziak M. Determination of precipitable water vapour, from the data of aerological and GNSS measurements at european and tropical stations / M. Paziak // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 89. — P. 20–28.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45906-
dc.format.extent20-28
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодезія, картографія і аерофотознімання (89), 2019
dc.relation.ispartofGeodesy, cartography and aerial photography (89), 2019
dc.relation.urihttp://weather.uwyo.edu/
dc.relation.uriftp://cddis.gsfc.nasa.gov/gps/products/troposphere/new/
dc.subjectГНСС-вимірювання
dc.subjectволога складова зенітної тропосферної затримки
dc.subjectаерологічне зондування
dc.subjectводяна пара
dc.subjectGNSS measurements
dc.subjectwet component of the zenith tropospheric delay
dc.subjectupper-air sounding
dc.subjectwater vapour
dc.titleDetermination of precipitable water vapour, from the data of aerological and GNSS measurements at european and tropical stations
dc.title.alternativeВизначення осаджуваної водяної пари за даними аерологічних та ГНСС-вимірювань на європейських і тропічних станціях
dc.typeArticle
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages9
dc.identifier.citationenPaziak M. Determination of precipitable water vapour, from the data of aerological and GNSS measurements at european and tropical stations / M. Paziak // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 89. — P. 20–28.
dc.relation.referencesAtmospheric Research Service at the University of
dc.relation.referencesWyoming, Online Resource: http://weather.uwyo.edu/
dc.relation.referencesupperair/sounding.html
dc.relation.referencesBevis, M., Businger, S., Herring, T. A., Rocken, C.,
dc.relation.referencesAnthes, R. A., & Ware, R. H. (1992). GPS
dc.relation.referencesmeteorology: Remote sensing of atmospheric water
dc.relation.referencesvapor using the Global Positioning System. Journal
dc.relation.referencesof Geophysical Research: Atmospheres, 97(D14), 15787–15801.
dc.relation.referencesBock, O., Bouin, M.-N., Walpersdorf, A., Lafore, J. P.,
dc.relation.referencesJanicot, S., Guichard, F., & Agusti-Panareda A. (2007).
dc.relation.referencesComparison of ground-based GPS precipitable water
dc.relation.referencesvapour to independent observations and NWP model
dc.relation.referencesreanalyses over Africa. Quarterly journal of the royal
dc.relation.referencesmeteorological society, 133, 2011–2027.
dc.relation.referencesChen, B., Dai, W., Liu, Z., Wu, L., Kuang, C., & Ao, M.
dc.relation.references(2018). Constructing a precipitable water vapor map
dc.relation.referencesfrom regional GNSS network observations without
dc.relation.referencescollocated meteorological data for weather
dc.relation.referencesforecasting. Atmospheric Measurement Techniques, 11(9), 5153–5166.
dc.relation.referencesFernández, L. I., Salio, P., Natali, M. P., & Meza, A. M.
dc.relation.references(2010). Estimation of precipitable water vapour from
dc.relation.referencesGPS measurements in Argentina: Validation and
dc.relation.referencesqualitative analysis of results. Advances in Space
dc.relation.referencesResearch, 46(7), 879–894.
dc.relation.referencesHaase, J., Ge, M., Vedel, H., & Calais, E. (2003). Accuracy
dc.relation.referencesand Variability of GPS Tropospheric Delay
dc.relation.referencesMeasurements of Water Vapor in the Western
dc.relation.referencesMediterranean. American Meteorological Society, 42, 1547–1568.
dc.relation.referencesJulio, A. Castro-Almazán, Gabriel Pérez-Jordán, & Casiana
dc.relation.referencesMuñoz-Tuñón, (2016). A semiempirical error estimation
dc.relation.referencestechnique for PWV derived from atmospheric
dc.relation.referencesradiosonde data. Atmos. Meas. Tech., 9, 4759–4781.
dc.relation.referencesKablak, N. I., Savchuk, S. H. (2012). Distant monitoring of
dc.relation.referencesthe atmosphere. Space Science and Technology. 18, 2, 20–25.
dc.relation.referencesKablak, N. I. (2011 a). Distant monitoring of the water vapor
dc.relation.referencesinto the atmosphere by navigation satellite systems.
dc.relation.referencesGeodesy, Cartography and Aerial Photographyv.
dc.relation.referencesVol.75, 31–35.
dc.relation.referencesKablak, N. I. (2011 b). Monitoring of the besieged water
dc.relation.referencesvapor on the basis of the processing of GNSS data.
dc.relation.referencesSpace Science and Technology. 17, 4, 65–73.
dc.relation.referencesPaziak, M. V., Zablotskyi, F. D. (2018). Features of the
dc.relation.referencesvertical distribution of the wet component of zenith
dc.relation.referencestropospheric delay in middle and tropical latitudes.
dc.relation.referencesCollection of scientific papers «Modern achievements of
dc.relation.referencesgeodesic science and industry», 2 (36), 41–49.
dc.relation.referencesPaziak, M. V., Zablotskyi, F. D. (2015 b). Comparison of the
dc.relation.referenceswet component of zenith tropospheric delay derived
dc.relation.referencesfrom GNSS observations with corresponding value from
dc.relation.referencesradio soundings. Geodesy, Cartography and Aerial
dc.relation.referencesPhotography. 81, 16–24.
dc.relation.referencesRealini, E., Sato, K., Tsuda, T., & Manik, S. (2014). An
dc.relation.referencesobservation campaign of precipitable water vapor with
dc.relation.referencesmultiple GPS receivers in western Java, Indonesia.
dc.relation.referencesProgress in Earth and Planetary Science, 1:17, 1–20.
dc.relation.referencesSavchuk, M. V., Zablotskyi, F. D. (2014). Estimation of the
dc.relation.referenceshydrostatic component of the zenith tropospheric delay,
dc.relation.referencesfrom the data of radio soundings. Herald geodesy and
dc.relation.referencescartography Kyiv: NDIHK, 6, 3–5.
dc.relation.referencesSavchuk, S. H., Zablotskyi, F. D. (2016). Monitoring of the
dc.relation.referencestropospheric water vapor in the western cross-border
dc.relation.referenceszone of Ukraine. Geodesy, Cartography and Aerial
dc.relation.referencesPhotography,. 83, 21–33.
dc.relation.referencesShilpa Manandhar, Yee HuiLee, Yu Song Meng, Feng
dc.relation.referencesYuan, & Jin Teong Ong. (2018). GPS-Derived PWV for
dc.relation.referencesRainfall Nowcasting in Tropical Region. IEEE
dc.relation.referencestransactions on geoscience and remote sensing, 1–10.
dc.relation.referencesSuelynn Choy, Chuan-Sheng Wang, Ta-Kang Yeh, John
dc.relation.referencesDawson, Minghai Jia, & Yuriy Kuleshov (2015).
dc.relation.referencesPrecipitable Water Vapor Estimates in the Australian
dc.relation.referencesRegion from Ground-Based GPS Observations.
dc.relation.referencesAdvances in Meteorology, Volume, Article ID 95481, 1-14.
dc.relation.referencesSuresh, C. Raju, K. Saha, B. V. Thampi, & K. Parameswaran.
dc.relation.references(2007). Empirical model for mean
dc.relation.referencestemperature for Indian zone and estimation of
dc.relation.referencesprecipitable water vapor from ground based GPS
dc.relation.referencesmeasurements. Annales Geophysicae, 25, 1935–1948.
dc.relation.referencesTropospheric GNSS Observation Files, Online Resource:
dc.relation.referencesftp://cddis.gsfc.nasa.gov/gps/products/troposphere/new/
dc.relation.referencesYanxin, T., Lilong, L., & Chaolong, Y. (2013). Empirical
dc.relation.referencesmodel for mean temperature and assessment of
dc.relation.referencesprecipitable water vapor derived from GPS. Geodesy
dc.relation.referencesand Geodynamics, 4 (4), 51–56.
dc.relation.referencesZablotskyi, F. D., Zablotska, O. F. (2010). An analysis
dc.relation.referencesof zenith tropospheric delay in the Pacific tropical
dc.relation.referenceslatitudes. Collection of scientific papers «Modern
dc.relation.referencesachievements of geodesic science and industry»,
dc.relation.referencesLviv: Liha-Pres, I, 50–55.
dc.relation.referencesZablotskyi, F. D., Paziak, M. V. (2015 a) An analysis of
dc.relation.referenceszenith tropospheric delay, defined during GNSS
dc.relation.referencesmeasurements and radio soundings in tropical and
dc.relation.referencesmiddle latitudes. Herald geodesy and cartography.
dc.relation.referencesKyiv: NDIHK, 3, 7–9.
dc.relation.referencesZablotskyi, F., Hresko, Yu., Palianytsia, B. (2017).
dc.relation.referencesMonitoring of water vapor content by radio sounding
dc.relation.referencesdata at the Kyiv aerological station and by GNSS
dc.relation.referencesobservation data at the GLSV station. Geodesy,
dc.relation.referencesCartography and Aerial Photography. 85, 13–17.
dc.relation.referencesenAtmospheric Research Service at the University of
dc.relation.referencesenWyoming, Online Resource: http://weather.uwyo.edu/
dc.relation.referencesenupperair/sounding.html
dc.relation.referencesenBevis, M., Businger, S., Herring, T. A., Rocken, C.,
dc.relation.referencesenAnthes, R. A., & Ware, R. H. (1992). GPS
dc.relation.referencesenmeteorology: Remote sensing of atmospheric water
dc.relation.referencesenvapor using the Global Positioning System. Journal
dc.relation.referencesenof Geophysical Research: Atmospheres, 97(D14), 15787–15801.
dc.relation.referencesenBock, O., Bouin, M.-N., Walpersdorf, A., Lafore, J. P.,
dc.relation.referencesenJanicot, S., Guichard, F., & Agusti-Panareda A. (2007).
dc.relation.referencesenComparison of ground-based GPS precipitable water
dc.relation.referencesenvapour to independent observations and NWP model
dc.relation.referencesenreanalyses over Africa. Quarterly journal of the royal
dc.relation.referencesenmeteorological society, 133, 2011–2027.
dc.relation.referencesenChen, B., Dai, W., Liu, Z., Wu, L., Kuang, C., & Ao, M.
dc.relation.referencesen(2018). Constructing a precipitable water vapor map
dc.relation.referencesenfrom regional GNSS network observations without
dc.relation.referencesencollocated meteorological data for weather
dc.relation.referencesenforecasting. Atmospheric Measurement Techniques, 11(9), 5153–5166.
dc.relation.referencesenFernández, L. I., Salio, P., Natali, M. P., & Meza, A. M.
dc.relation.referencesen(2010). Estimation of precipitable water vapour from
dc.relation.referencesenGPS measurements in Argentina: Validation and
dc.relation.referencesenqualitative analysis of results. Advances in Space
dc.relation.referencesenResearch, 46(7), 879–894.
dc.relation.referencesenHaase, J., Ge, M., Vedel, H., & Calais, E. (2003). Accuracy
dc.relation.referencesenand Variability of GPS Tropospheric Delay
dc.relation.referencesenMeasurements of Water Vapor in the Western
dc.relation.referencesenMediterranean. American Meteorological Society, 42, 1547–1568.
dc.relation.referencesenJulio, A. Castro-Almazán, Gabriel Pérez-Jordán, & Casiana
dc.relation.referencesenMuñoz-Tuñón, (2016). A semiempirical error estimation
dc.relation.referencesentechnique for PWV derived from atmospheric
dc.relation.referencesenradiosonde data. Atmos. Meas. Tech., 9, 4759–4781.
dc.relation.referencesenKablak, N. I., Savchuk, S. H. (2012). Distant monitoring of
dc.relation.referencesenthe atmosphere. Space Science and Technology. 18, 2, 20–25.
dc.relation.referencesenKablak, N. I. (2011 a). Distant monitoring of the water vapor
dc.relation.referenceseninto the atmosphere by navigation satellite systems.
dc.relation.referencesenGeodesy, Cartography and Aerial Photographyv.
dc.relation.referencesenVol.75, 31–35.
dc.relation.referencesenKablak, N. I. (2011 b). Monitoring of the besieged water
dc.relation.referencesenvapor on the basis of the processing of GNSS data.
dc.relation.referencesenSpace Science and Technology. 17, 4, 65–73.
dc.relation.referencesenPaziak, M. V., Zablotskyi, F. D. (2018). Features of the
dc.relation.referencesenvertical distribution of the wet component of zenith
dc.relation.referencesentropospheric delay in middle and tropical latitudes.
dc.relation.referencesenCollection of scientific papers "Modern achievements of
dc.relation.referencesengeodesic science and industry", 2 (36), 41–49.
dc.relation.referencesenPaziak, M. V., Zablotskyi, F. D. (2015 b). Comparison of the
dc.relation.referencesenwet component of zenith tropospheric delay derived
dc.relation.referencesenfrom GNSS observations with corresponding value from
dc.relation.referencesenradio soundings. Geodesy, Cartography and Aerial
dc.relation.referencesenPhotography. 81, 16–24.
dc.relation.referencesenRealini, E., Sato, K., Tsuda, T., & Manik, S. (2014). An
dc.relation.referencesenobservation campaign of precipitable water vapor with
dc.relation.referencesenmultiple GPS receivers in western Java, Indonesia.
dc.relation.referencesenProgress in Earth and Planetary Science, 1:17, 1–20.
dc.relation.referencesenSavchuk, M. V., Zablotskyi, F. D. (2014). Estimation of the
dc.relation.referencesenhydrostatic component of the zenith tropospheric delay,
dc.relation.referencesenfrom the data of radio soundings. Herald geodesy and
dc.relation.referencesencartography Kyiv: NDIHK, 6, 3–5.
dc.relation.referencesenSavchuk, S. H., Zablotskyi, F. D. (2016). Monitoring of the
dc.relation.referencesentropospheric water vapor in the western cross-border
dc.relation.referencesenzone of Ukraine. Geodesy, Cartography and Aerial
dc.relation.referencesenPhotography,. 83, 21–33.
dc.relation.referencesenShilpa Manandhar, Yee HuiLee, Yu Song Meng, Feng
dc.relation.referencesenYuan, & Jin Teong Ong. (2018). GPS-Derived PWV for
dc.relation.referencesenRainfall Nowcasting in Tropical Region. IEEE
dc.relation.referencesentransactions on geoscience and remote sensing, 1–10.
dc.relation.referencesenSuelynn Choy, Chuan-Sheng Wang, Ta-Kang Yeh, John
dc.relation.referencesenDawson, Minghai Jia, & Yuriy Kuleshov (2015).
dc.relation.referencesenPrecipitable Water Vapor Estimates in the Australian
dc.relation.referencesenRegion from Ground-Based GPS Observations.
dc.relation.referencesenAdvances in Meteorology, Volume, Article ID 95481, 1-14.
dc.relation.referencesenSuresh, C. Raju, K. Saha, B. V. Thampi, & K. Parameswaran.
dc.relation.referencesen(2007). Empirical model for mean
dc.relation.referencesentemperature for Indian zone and estimation of
dc.relation.referencesenprecipitable water vapor from ground based GPS
dc.relation.referencesenmeasurements. Annales Geophysicae, 25, 1935–1948.
dc.relation.referencesenTropospheric GNSS Observation Files, Online Resource:
dc.relation.referencesenftp://cddis.gsfc.nasa.gov/gps/products/troposphere/new/
dc.relation.referencesenYanxin, T., Lilong, L., & Chaolong, Y. (2013). Empirical
dc.relation.referencesenmodel for mean temperature and assessment of
dc.relation.referencesenprecipitable water vapor derived from GPS. Geodesy
dc.relation.referencesenand Geodynamics, 4 (4), 51–56.
dc.relation.referencesenZablotskyi, F. D., Zablotska, O. F. (2010). An analysis
dc.relation.referencesenof zenith tropospheric delay in the Pacific tropical
dc.relation.referencesenlatitudes. Collection of scientific papers "Modern
dc.relation.referencesenachievements of geodesic science and industry",
dc.relation.referencesenLviv: Liha-Pres, I, 50–55.
dc.relation.referencesenZablotskyi, F. D., Paziak, M. V. (2015 a) An analysis of
dc.relation.referencesenzenith tropospheric delay, defined during GNSS
dc.relation.referencesenmeasurements and radio soundings in tropical and
dc.relation.referencesenmiddle latitudes. Herald geodesy and cartography.
dc.relation.referencesenKyiv: NDIHK, 3, 7–9.
dc.relation.referencesenZablotskyi, F., Hresko, Yu., Palianytsia, B. (2017).
dc.relation.referencesenMonitoring of water vapor content by radio sounding
dc.relation.referencesendata at the Kyiv aerological station and by GNSS
dc.relation.referencesenobservation data at the GLSV station. Geodesy,
dc.relation.referencesenCartography and Aerial Photography. 85, 13–17.
dc.citation.journalTitleГеодезія, картографія і аерофотознімання
dc.citation.volume89
dc.citation.spage20
dc.citation.epage28
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.subject.udc629.056.88
dc.subject.udc551.51
Appears in Collections:Геодезія, картографія і аерофотознімання. – 2019. – Випуск 89

Files in This Item:
File Description SizeFormat 
2019v89_Paziak_M-Determination_of_precipitable_20-28.pdf568.1 kBAdobe PDFView/Open
2019v89_Paziak_M-Determination_of_precipitable_20-28__COVER.png512.47 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.