DC Field | Value | Language |
dc.contributor.author | Пазяк, М. В. | |
dc.contributor.author | Paziak, M. | |
dc.date.accessioned | 2020-02-21T08:54:22Z | - |
dc.date.available | 2020-02-21T08:54:22Z | - |
dc.date.created | 2019-02-28 | |
dc.date.issued | 2019-02-28 | |
dc.identifier.citation | Paziak M. Determination of precipitable water vapour, from the data of aerological and GNSS measurements at european and tropical stations / M. Paziak // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 89. — P. 20–28. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/45906 | - |
dc.format.extent | 20-28 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Геодезія, картографія і аерофотознімання (89), 2019 | |
dc.relation.ispartof | Geodesy, cartography and aerial photography (89), 2019 | |
dc.relation.uri | http://weather.uwyo.edu/ | |
dc.relation.uri | ftp://cddis.gsfc.nasa.gov/gps/products/troposphere/new/ | |
dc.subject | ГНСС-вимірювання | |
dc.subject | волога складова зенітної тропосферної затримки | |
dc.subject | аерологічне зондування | |
dc.subject | водяна пара | |
dc.subject | GNSS measurements | |
dc.subject | wet component of the zenith tropospheric delay | |
dc.subject | upper-air sounding | |
dc.subject | water vapour | |
dc.title | Determination of precipitable water vapour, from the data of aerological and GNSS measurements at european and tropical stations | |
dc.title.alternative | Визначення осаджуваної водяної пари за даними аерологічних та ГНСС-вимірювань на європейських і тропічних станціях | |
dc.type | Article | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.format.pages | 9 | |
dc.identifier.citationen | Paziak M. Determination of precipitable water vapour, from the data of aerological and GNSS measurements at european and tropical stations / M. Paziak // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 89. — P. 20–28. | |
dc.relation.references | Atmospheric Research Service at the University of | |
dc.relation.references | Wyoming, Online Resource: http://weather.uwyo.edu/ | |
dc.relation.references | upperair/sounding.html | |
dc.relation.references | Bevis, M., Businger, S., Herring, T. A., Rocken, C., | |
dc.relation.references | Anthes, R. A., & Ware, R. H. (1992). GPS | |
dc.relation.references | meteorology: Remote sensing of atmospheric water | |
dc.relation.references | vapor using the Global Positioning System. Journal | |
dc.relation.references | of Geophysical Research: Atmospheres, 97(D14), 15787–15801. | |
dc.relation.references | Bock, O., Bouin, M.-N., Walpersdorf, A., Lafore, J. P., | |
dc.relation.references | Janicot, S., Guichard, F., & Agusti-Panareda A. (2007). | |
dc.relation.references | Comparison of ground-based GPS precipitable water | |
dc.relation.references | vapour to independent observations and NWP model | |
dc.relation.references | reanalyses over Africa. Quarterly journal of the royal | |
dc.relation.references | meteorological society, 133, 2011–2027. | |
dc.relation.references | Chen, B., Dai, W., Liu, Z., Wu, L., Kuang, C., & Ao, M. | |
dc.relation.references | (2018). Constructing a precipitable water vapor map | |
dc.relation.references | from regional GNSS network observations without | |
dc.relation.references | collocated meteorological data for weather | |
dc.relation.references | forecasting. Atmospheric Measurement Techniques, 11(9), 5153–5166. | |
dc.relation.references | Fernández, L. I., Salio, P., Natali, M. P., & Meza, A. M. | |
dc.relation.references | (2010). Estimation of precipitable water vapour from | |
dc.relation.references | GPS measurements in Argentina: Validation and | |
dc.relation.references | qualitative analysis of results. Advances in Space | |
dc.relation.references | Research, 46(7), 879–894. | |
dc.relation.references | Haase, J., Ge, M., Vedel, H., & Calais, E. (2003). Accuracy | |
dc.relation.references | and Variability of GPS Tropospheric Delay | |
dc.relation.references | Measurements of Water Vapor in the Western | |
dc.relation.references | Mediterranean. American Meteorological Society, 42, 1547–1568. | |
dc.relation.references | Julio, A. Castro-Almazán, Gabriel Pérez-Jordán, & Casiana | |
dc.relation.references | Muñoz-Tuñón, (2016). A semiempirical error estimation | |
dc.relation.references | technique for PWV derived from atmospheric | |
dc.relation.references | radiosonde data. Atmos. Meas. Tech., 9, 4759–4781. | |
dc.relation.references | Kablak, N. I., Savchuk, S. H. (2012). Distant monitoring of | |
dc.relation.references | the atmosphere. Space Science and Technology. 18, 2, 20–25. | |
dc.relation.references | Kablak, N. I. (2011 a). Distant monitoring of the water vapor | |
dc.relation.references | into the atmosphere by navigation satellite systems. | |
dc.relation.references | Geodesy, Cartography and Aerial Photographyv. | |
dc.relation.references | Vol.75, 31–35. | |
dc.relation.references | Kablak, N. I. (2011 b). Monitoring of the besieged water | |
dc.relation.references | vapor on the basis of the processing of GNSS data. | |
dc.relation.references | Space Science and Technology. 17, 4, 65–73. | |
dc.relation.references | Paziak, M. V., Zablotskyi, F. D. (2018). Features of the | |
dc.relation.references | vertical distribution of the wet component of zenith | |
dc.relation.references | tropospheric delay in middle and tropical latitudes. | |
dc.relation.references | Collection of scientific papers «Modern achievements of | |
dc.relation.references | geodesic science and industry», 2 (36), 41–49. | |
dc.relation.references | Paziak, M. V., Zablotskyi, F. D. (2015 b). Comparison of the | |
dc.relation.references | wet component of zenith tropospheric delay derived | |
dc.relation.references | from GNSS observations with corresponding value from | |
dc.relation.references | radio soundings. Geodesy, Cartography and Aerial | |
dc.relation.references | Photography. 81, 16–24. | |
dc.relation.references | Realini, E., Sato, K., Tsuda, T., & Manik, S. (2014). An | |
dc.relation.references | observation campaign of precipitable water vapor with | |
dc.relation.references | multiple GPS receivers in western Java, Indonesia. | |
dc.relation.references | Progress in Earth and Planetary Science, 1:17, 1–20. | |
dc.relation.references | Savchuk, M. V., Zablotskyi, F. D. (2014). Estimation of the | |
dc.relation.references | hydrostatic component of the zenith tropospheric delay, | |
dc.relation.references | from the data of radio soundings. Herald geodesy and | |
dc.relation.references | cartography Kyiv: NDIHK, 6, 3–5. | |
dc.relation.references | Savchuk, S. H., Zablotskyi, F. D. (2016). Monitoring of the | |
dc.relation.references | tropospheric water vapor in the western cross-border | |
dc.relation.references | zone of Ukraine. Geodesy, Cartography and Aerial | |
dc.relation.references | Photography,. 83, 21–33. | |
dc.relation.references | Shilpa Manandhar, Yee HuiLee, Yu Song Meng, Feng | |
dc.relation.references | Yuan, & Jin Teong Ong. (2018). GPS-Derived PWV for | |
dc.relation.references | Rainfall Nowcasting in Tropical Region. IEEE | |
dc.relation.references | transactions on geoscience and remote sensing, 1–10. | |
dc.relation.references | Suelynn Choy, Chuan-Sheng Wang, Ta-Kang Yeh, John | |
dc.relation.references | Dawson, Minghai Jia, & Yuriy Kuleshov (2015). | |
dc.relation.references | Precipitable Water Vapor Estimates in the Australian | |
dc.relation.references | Region from Ground-Based GPS Observations. | |
dc.relation.references | Advances in Meteorology, Volume, Article ID 95481, 1-14. | |
dc.relation.references | Suresh, C. Raju, K. Saha, B. V. Thampi, & K. Parameswaran. | |
dc.relation.references | (2007). Empirical model for mean | |
dc.relation.references | temperature for Indian zone and estimation of | |
dc.relation.references | precipitable water vapor from ground based GPS | |
dc.relation.references | measurements. Annales Geophysicae, 25, 1935–1948. | |
dc.relation.references | Tropospheric GNSS Observation Files, Online Resource: | |
dc.relation.references | ftp://cddis.gsfc.nasa.gov/gps/products/troposphere/new/ | |
dc.relation.references | Yanxin, T., Lilong, L., & Chaolong, Y. (2013). Empirical | |
dc.relation.references | model for mean temperature and assessment of | |
dc.relation.references | precipitable water vapor derived from GPS. Geodesy | |
dc.relation.references | and Geodynamics, 4 (4), 51–56. | |
dc.relation.references | Zablotskyi, F. D., Zablotska, O. F. (2010). An analysis | |
dc.relation.references | of zenith tropospheric delay in the Pacific tropical | |
dc.relation.references | latitudes. Collection of scientific papers «Modern | |
dc.relation.references | achievements of geodesic science and industry», | |
dc.relation.references | Lviv: Liha-Pres, I, 50–55. | |
dc.relation.references | Zablotskyi, F. D., Paziak, M. V. (2015 a) An analysis of | |
dc.relation.references | zenith tropospheric delay, defined during GNSS | |
dc.relation.references | measurements and radio soundings in tropical and | |
dc.relation.references | middle latitudes. Herald geodesy and cartography. | |
dc.relation.references | Kyiv: NDIHK, 3, 7–9. | |
dc.relation.references | Zablotskyi, F., Hresko, Yu., Palianytsia, B. (2017). | |
dc.relation.references | Monitoring of water vapor content by radio sounding | |
dc.relation.references | data at the Kyiv aerological station and by GNSS | |
dc.relation.references | observation data at the GLSV station. Geodesy, | |
dc.relation.references | Cartography and Aerial Photography. 85, 13–17. | |
dc.relation.referencesen | Atmospheric Research Service at the University of | |
dc.relation.referencesen | Wyoming, Online Resource: http://weather.uwyo.edu/ | |
dc.relation.referencesen | upperair/sounding.html | |
dc.relation.referencesen | Bevis, M., Businger, S., Herring, T. A., Rocken, C., | |
dc.relation.referencesen | Anthes, R. A., & Ware, R. H. (1992). GPS | |
dc.relation.referencesen | meteorology: Remote sensing of atmospheric water | |
dc.relation.referencesen | vapor using the Global Positioning System. Journal | |
dc.relation.referencesen | of Geophysical Research: Atmospheres, 97(D14), 15787–15801. | |
dc.relation.referencesen | Bock, O., Bouin, M.-N., Walpersdorf, A., Lafore, J. P., | |
dc.relation.referencesen | Janicot, S., Guichard, F., & Agusti-Panareda A. (2007). | |
dc.relation.referencesen | Comparison of ground-based GPS precipitable water | |
dc.relation.referencesen | vapour to independent observations and NWP model | |
dc.relation.referencesen | reanalyses over Africa. Quarterly journal of the royal | |
dc.relation.referencesen | meteorological society, 133, 2011–2027. | |
dc.relation.referencesen | Chen, B., Dai, W., Liu, Z., Wu, L., Kuang, C., & Ao, M. | |
dc.relation.referencesen | (2018). Constructing a precipitable water vapor map | |
dc.relation.referencesen | from regional GNSS network observations without | |
dc.relation.referencesen | collocated meteorological data for weather | |
dc.relation.referencesen | forecasting. Atmospheric Measurement Techniques, 11(9), 5153–5166. | |
dc.relation.referencesen | Fernández, L. I., Salio, P., Natali, M. P., & Meza, A. M. | |
dc.relation.referencesen | (2010). Estimation of precipitable water vapour from | |
dc.relation.referencesen | GPS measurements in Argentina: Validation and | |
dc.relation.referencesen | qualitative analysis of results. Advances in Space | |
dc.relation.referencesen | Research, 46(7), 879–894. | |
dc.relation.referencesen | Haase, J., Ge, M., Vedel, H., & Calais, E. (2003). Accuracy | |
dc.relation.referencesen | and Variability of GPS Tropospheric Delay | |
dc.relation.referencesen | Measurements of Water Vapor in the Western | |
dc.relation.referencesen | Mediterranean. American Meteorological Society, 42, 1547–1568. | |
dc.relation.referencesen | Julio, A. Castro-Almazán, Gabriel Pérez-Jordán, & Casiana | |
dc.relation.referencesen | Muñoz-Tuñón, (2016). A semiempirical error estimation | |
dc.relation.referencesen | technique for PWV derived from atmospheric | |
dc.relation.referencesen | radiosonde data. Atmos. Meas. Tech., 9, 4759–4781. | |
dc.relation.referencesen | Kablak, N. I., Savchuk, S. H. (2012). Distant monitoring of | |
dc.relation.referencesen | the atmosphere. Space Science and Technology. 18, 2, 20–25. | |
dc.relation.referencesen | Kablak, N. I. (2011 a). Distant monitoring of the water vapor | |
dc.relation.referencesen | into the atmosphere by navigation satellite systems. | |
dc.relation.referencesen | Geodesy, Cartography and Aerial Photographyv. | |
dc.relation.referencesen | Vol.75, 31–35. | |
dc.relation.referencesen | Kablak, N. I. (2011 b). Monitoring of the besieged water | |
dc.relation.referencesen | vapor on the basis of the processing of GNSS data. | |
dc.relation.referencesen | Space Science and Technology. 17, 4, 65–73. | |
dc.relation.referencesen | Paziak, M. V., Zablotskyi, F. D. (2018). Features of the | |
dc.relation.referencesen | vertical distribution of the wet component of zenith | |
dc.relation.referencesen | tropospheric delay in middle and tropical latitudes. | |
dc.relation.referencesen | Collection of scientific papers "Modern achievements of | |
dc.relation.referencesen | geodesic science and industry", 2 (36), 41–49. | |
dc.relation.referencesen | Paziak, M. V., Zablotskyi, F. D. (2015 b). Comparison of the | |
dc.relation.referencesen | wet component of zenith tropospheric delay derived | |
dc.relation.referencesen | from GNSS observations with corresponding value from | |
dc.relation.referencesen | radio soundings. Geodesy, Cartography and Aerial | |
dc.relation.referencesen | Photography. 81, 16–24. | |
dc.relation.referencesen | Realini, E., Sato, K., Tsuda, T., & Manik, S. (2014). An | |
dc.relation.referencesen | observation campaign of precipitable water vapor with | |
dc.relation.referencesen | multiple GPS receivers in western Java, Indonesia. | |
dc.relation.referencesen | Progress in Earth and Planetary Science, 1:17, 1–20. | |
dc.relation.referencesen | Savchuk, M. V., Zablotskyi, F. D. (2014). Estimation of the | |
dc.relation.referencesen | hydrostatic component of the zenith tropospheric delay, | |
dc.relation.referencesen | from the data of radio soundings. Herald geodesy and | |
dc.relation.referencesen | cartography Kyiv: NDIHK, 6, 3–5. | |
dc.relation.referencesen | Savchuk, S. H., Zablotskyi, F. D. (2016). Monitoring of the | |
dc.relation.referencesen | tropospheric water vapor in the western cross-border | |
dc.relation.referencesen | zone of Ukraine. Geodesy, Cartography and Aerial | |
dc.relation.referencesen | Photography,. 83, 21–33. | |
dc.relation.referencesen | Shilpa Manandhar, Yee HuiLee, Yu Song Meng, Feng | |
dc.relation.referencesen | Yuan, & Jin Teong Ong. (2018). GPS-Derived PWV for | |
dc.relation.referencesen | Rainfall Nowcasting in Tropical Region. IEEE | |
dc.relation.referencesen | transactions on geoscience and remote sensing, 1–10. | |
dc.relation.referencesen | Suelynn Choy, Chuan-Sheng Wang, Ta-Kang Yeh, John | |
dc.relation.referencesen | Dawson, Minghai Jia, & Yuriy Kuleshov (2015). | |
dc.relation.referencesen | Precipitable Water Vapor Estimates in the Australian | |
dc.relation.referencesen | Region from Ground-Based GPS Observations. | |
dc.relation.referencesen | Advances in Meteorology, Volume, Article ID 95481, 1-14. | |
dc.relation.referencesen | Suresh, C. Raju, K. Saha, B. V. Thampi, & K. Parameswaran. | |
dc.relation.referencesen | (2007). Empirical model for mean | |
dc.relation.referencesen | temperature for Indian zone and estimation of | |
dc.relation.referencesen | precipitable water vapor from ground based GPS | |
dc.relation.referencesen | measurements. Annales Geophysicae, 25, 1935–1948. | |
dc.relation.referencesen | Tropospheric GNSS Observation Files, Online Resource: | |
dc.relation.referencesen | ftp://cddis.gsfc.nasa.gov/gps/products/troposphere/new/ | |
dc.relation.referencesen | Yanxin, T., Lilong, L., & Chaolong, Y. (2013). Empirical | |
dc.relation.referencesen | model for mean temperature and assessment of | |
dc.relation.referencesen | precipitable water vapor derived from GPS. Geodesy | |
dc.relation.referencesen | and Geodynamics, 4 (4), 51–56. | |
dc.relation.referencesen | Zablotskyi, F. D., Zablotska, O. F. (2010). An analysis | |
dc.relation.referencesen | of zenith tropospheric delay in the Pacific tropical | |
dc.relation.referencesen | latitudes. Collection of scientific papers "Modern | |
dc.relation.referencesen | achievements of geodesic science and industry", | |
dc.relation.referencesen | Lviv: Liha-Pres, I, 50–55. | |
dc.relation.referencesen | Zablotskyi, F. D., Paziak, M. V. (2015 a) An analysis of | |
dc.relation.referencesen | zenith tropospheric delay, defined during GNSS | |
dc.relation.referencesen | measurements and radio soundings in tropical and | |
dc.relation.referencesen | middle latitudes. Herald geodesy and cartography. | |
dc.relation.referencesen | Kyiv: NDIHK, 3, 7–9. | |
dc.relation.referencesen | Zablotskyi, F., Hresko, Yu., Palianytsia, B. (2017). | |
dc.relation.referencesen | Monitoring of water vapor content by radio sounding | |
dc.relation.referencesen | data at the Kyiv aerological station and by GNSS | |
dc.relation.referencesen | observation data at the GLSV station. Geodesy, | |
dc.relation.referencesen | Cartography and Aerial Photography. 85, 13–17. | |
dc.citation.journalTitle | Геодезія, картографія і аерофотознімання | |
dc.citation.volume | 89 | |
dc.citation.spage | 20 | |
dc.citation.epage | 28 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.subject.udc | 629.056.88 | |
dc.subject.udc | 551.51 | |
Appears in Collections: | Геодезія, картографія і аерофотознімання. – 2019. – Випуск 89
|