https://oldena.lpnu.ua/handle/ntb/45872
Title: | Earth’s figure changes – geodynamic factor of stressed-deformed litosphere state |
Other Titles: | Зміни фігури землі – геодинамічний фактор напружено-деформованого стану літосфери |
Authors: | Церклевич, А. Л. Шило, Є. О. Шило, О. М. Tserklevych, A. L. Shylo, Ye. O. Shylo, O. M. |
Affiliation: | Національний університет “Львівська політехніка” Lviv Polytechnic National University |
Bibliographic description (Ukraine): | Tserklevych A. L. Earth’s figure changes – geodynamic factor of stressed-deformed litosphere state / A. L. Tserklevych, Ye. O. Shylo, O. M. Shylo // Geodynamics : scientific journal. — Lviv : Lviv Polytechnic Publishing House, 2019. — No 1 (26). — P. 28–42. |
Bibliographic description (International): | Tserklevych A. L. Earth’s figure changes – geodynamic factor of stressed-deformed litosphere state / A. L. Tserklevych, Ye. O. Shylo, O. M. Shylo // Geodynamics : scientific journal. — Lviv Polytechnic Publishing House, 2019. — No 1 (26). — P. 28–42. |
Is part of: | Геодинаміка : науковий журнал, 1 (26), 2019 Geodynamics : scientific journal, 1 (26), 2019 |
Journal/Collection: | Геодинаміка : науковий журнал |
Issue: | 1 (26) |
Issue Date: | 26-Jun-2019 |
Publisher: | Lviv Polytechnic Publishing House |
Place of the edition/event: | Львів |
UDC: | 550.311 |
Keywords: | двовісний і тривісний еліпсоїд цифрова модель рельєфу поверхні літосфери Землі напружений стан літосфери дилатація деформація зсуву biaxial and triaxial ellipsoid digital model of the relief of the Earth’s lithosphere surface stress state of the lithosphere dilatation displacement deformation |
Number of pages: | 15 |
Page range: | 28-42 |
Start page: | 28 |
End page: | 42 |
Abstract: | Мета цієї роботи – показати, як у процесі еволюційного саморозвитку планети в результаті дії
гравітаційно-ротаційних та ендогенних сил відбувається перерозподіл мас, що приводить до
трансформації фігури літосфери від сфери до двовісного та тривісного еліпсоїдів і навпаки, зміни
сплющеності та переміщення полюса в геологічному часі. Визначити деформації фігури літосфери
внаслідок переорієнтації полюса фігури. Методика. Фігура поверхні літосфери геометрично повернута
відносно фігури геоїда і в геологічному часі орієнтація цих фігур і параметри еліпсоїдів, які їх
апроксимують, змінювались. Таке розміщення фігури літосфери і фігури геоїда може створювати
напруження, яке направлене на приведення розподілу мас літосфери у відповідність з фігурою геоїда.
Обчислення параметрів двовісного і тривісного еліпсоїдів виконувалося на основі даних цифрової моделі поверхні Землі ETOPO1. Для моделювання трансформації фігури Землі і оцінки впливу її переорієнтації
на напружено-деформований стан літосфери в далекі геологічні епохи використані дані цифрового
моделювання рельєфу paleoDEM, отримані в роботі К. Скотези і Н. Врайта. Результати. Обчислені
параметри двовісного і тривісного еліпсоїдів на фіксовані моменти геологічного часу. Проведений
порівняльний аналіз результатів зміни фігури Землі за paleoDEM та створеними на основі растрових
зображень ЦМР, побудованими за палеогеологічними даними Р. Блекі і К. Скотези. Наведені формули
для обчислення зміщень і деформацій, які пов’язані з трансформацією фігури і орієнтацією верхньої
оболонки планети. Приведена інтерпретація отриманих результатів досліджень планетарної динаміки
фігури літосфери Землі та глобального деформаційного стану. Наукова новизна. Отримані
характеристики напружено-деформаційного стану літосфери Землі за даними моделювання геопалеоре-
конструкцій в геологічному часі. Така інтерпретація ролі гравітаційно-ротаційних сил у формуванні
глобального поля деформацій і напружень як наслідок трансформації фігури поверхні літосфери Землі.
Практична значущість. Подані результати будуть використовуватись у подальших дослідженнях, які
спрямовані на вивчення планетарних характеристик нашої планети, динаміки їх змін у часі та
глобального напружено-деформованого стану. The purpose of this work is to show how redistribution of masses occurs as a result of gravityrotational and endogenous forces in the evolutionary self-development of the planet, which leads to the transformation of the lithosphere from the sphere to the biaxial and then to triaxial ellipsoid, and vice versa; and changes in compression and the movement of the pole in geological time. Determine the deformation of the figure of the lithosphere due to the reorientation of the figure’s pole. Methodology. The figure of the lithospheric surface is geometrically rotated relative to the figure of the geoid. The orientation of these figures and the parameters of the ellipsoids that approximate them, have changed during the geological time. Such placement of the lithospheric figure and of the geoid figure can create a stress aimed at bringing the distribution of the lithosphere masses into conformity with the figure of the geoid. The calculation of the parameters of biaxial and triaxial ellipsoids was performed based on the data of the digital Earth surface model ETOPO1. Data from the digital modeling of the paleoDEM relief, obtained in the work of K. Skotese and N. Wright have been used for modelling the transformation of the Earth’s figure and in the estimation of the impact of its reorientation on the stress-strain state of the lithosphere in the ancient geological epochs. Results The parameters of biaxial and triaxial ellipsoids were calculated for fixed moments of geological time. A comparative analysis of the results of changes in the Earth’s figure for paleoDEM and created on the basis of raster images of DSMs, built on palaeogeological data by R. Blakey and K. Skotese, were carried out. The formulas for calculation of displacements and deformations, which are related to the transformation of the figure and the orientation of the upper shell of the planet, are given. The interpretation of the research results of planetary dynamics of the Earth’s lithosphere figure and the global deformation state are presented. Scientific novelty. The characteristics of the deformation state of the Earth’s lithosphere according to modeling of geopaleo-reconstruction in geological time are obtained. Given is the interpretation of the role of gravity-rotational forces in the formation of the global field of stress and the transformation of the lithospheric figure. Practical significance. The results will be used in further researches aimed at studying the planetary characteristics of our planet, the dynamics of its changes in time, and the global tension. |
URI: | https://ena.lpnu.ua/handle/ntb/45872 |
Copyright owner: | © Інститут геології і геохімії горючих копалин Національної академії наук України, 2019 © Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2019 © Національний університет «Львівська політехніка», 2019 © A. L. Tserklevych, 28 Ye. О. Shylo, O. М. Shylo |
URL for reference material: | https://www2.nau.edu/rcb7/ http://www.sibran.ru/upload/iblock/074/074591d1edc11bd8e6d97ad317f48974.pdf http://www.scotese.com/ https://www.earthbyte.org/paleodemresourcescotese-and-wright-2018/ http://ena.lp.edu.ua/bitstream/ntb/41367/2/2017v1__33__Tadyeyev_OEstimating_three_dimensional_53-60.pdf https://doi.org/10.15407/dopovidi2018.01.067 http://www.evgengusev.narod.ru/fluidolit/tyapkin-2009.html |
References (Ukraine): | Amante, C., & Eakins, B. W. (2009). ETOPO1 arcminute global relief model: procedures, data sources and analysis. Blakey R. (2016). Global Paleogeography. Retrieved from https://www2.nau.edu/rcb7/ Hofmann-Wellenhof, B., and Moritz H. (2007). “Physical surveying.” M.: MIIGAiK. Khain, V. E. (2010). Constructing a truly global model of Earth’s dynamics: basic principles. Geology and Geophysics, 51(6), 753–760. Retrieved from http://www.sibran.ru/upload/iblock/074/074591d1edc11bd8e6d97ad317f48974.pdf Krasovsky, F. N. (1947). On some scientific problems of astronomical geodesy in connection with the study of the structure of the hard shell of the Earth. Fav. cit, 1, 251–269. Krasovsky, F. N. (1955). Selected works. In 4 volumes. T. Iv. Levin, B. V. (2001). The role of the movements of the inner core of the Earth in tectonic processes. Fundamental problems of general tectonics. M.: Scientific world, 444–460. Mank, W., MacDonald, G., (1964). Rotating the Earth: World. Marchenko, O. M., Tretiak K. R., & Yarema N. P. (2013). Reference systems in geodesy. Lviv Polytechnic Publishing House. Mashimov, M. M. (1999). Essay on subject areas and interpenetration of geodesy, iconometry and cartography of modern times (as a matter of discussion). Proceedings of higher educational institutions. Geodesy and aerial photography, (3), 44–58. Mashimov, M. M. (1999). Physical geodesy: the metamorphosis at the beginning of the path, the revival of Krasovsky’s teachings in modern times (as a matter of discussion). Proceedings of higher educational institutions. Geodesy and aerial photography, (6), 63–76. Molodensky, M. S. (1945). The role of geophysics and geology in the study of the figure of the Earth. Sat scientific and technical and manuf. articles on geodesy, cartography, topography, aerial survey and gravimetry, (8), 24. Molodensky, M. S. (1958). Current tasks of studying the figure of the Earth. Geodesy and cartography, (7), 3–5. Moritz, H. (1994). Figure of the Earth: Theoretical geodesy and the internal structure of the Earth. Kiev: Publishing House of the National Academy of Sciences of Ukraine. Odesskyi, I. A. (2004). Rotational-pulsation regime of the Earth and its geological studies. Rashevsky P. K. (1967) Riemannian geometry and tensor analysis. M.: Science. Rebetskii, Y. L. (2009, October). Estimation of stress values in the method of cataclastic analysis of shear fractures. In Doklady Earth Sciences (Vol. 428, No. 1, pp. 1202–1207). MAIK Nauka/ Interperiodica. Rebetskii, Y. L. (2016, July). Estimation of the influence of daily rotation of the earth on the stress state of the continental crust. In Doklady Earth Sciences (Vol. 469, No. 1, pp. 743–747). Pleiades Publishing. Rebetsky, Y. L. (2015). On the specific state of crustal stresses in intracontinental orogens. Geodynamics & Tectonophysics, 6(4), 437-466. Rebetsky, Y. L., & Marinin, A. V. (2006). Preseismic stress field before the Sumatra-Andaman earthquake of 26.12. 2004: a model of metastable state of rocks. Russian Geology and Geophysics, 47(11), 1173–1185. Rebetsky, Y. L., & Tatevossian, R. E. (2013). Rupture propagation in strong earthquake sources and tectonic stress field. Bulletin de la Societe Geologique de France, 184(4-5), 335–346. Scheidegger, A. (1987). Fundamentals of Geodynamics (a Russian translation), 384 pp. Nedra,Moscow. Scotese, C. R. (2017). PALEOMAP Project. Retrieved from http://www.scotese.com/ Scotese, C. R., & Wright, N. (2018). PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic PALEOMAP Project, https://www.earthbyte.org/paleodemresourcescotese-and-wright-2018/ Stovas, M. V. (1975). Selected Works. Nedra, Moscow, 155 p. Tadyeyev, O. (2017). Estimating three-dimensional earth deformation fields by methods of the projective differential geometry. Earth dilatation fields. Modern achievements in geodesic science and industry. 1(33), 53–60. Retrieved from http://ena.lp.edu.ua/bitstream/ntb/41367/2/2017v1__33__Tadyeyev_OEstimating_three_dimensional_53-60.pdf Tserklevych, A. L., Zayats, O. S., & Shylo, Y. O. (2016). Approximation of the physical surface of the earth by biaxial and triaxial ellipsoid. Geodynamics, (1), 40-49. Tserklevych, A. L., Zayats, O. S., & Shylo, Y. O. (2017). Dynamics of the Earth shape transformation. Kinematics and Physics of Celestial Bodies, 33(3), 130-141. Tserklevych, A. L., Zayats, O. S., Shylo, Y. O., & Shylo, O. M. (2018). Generation of the Stressed State of the Lithosphere of the Earth and Mars Caused by the Reorientation of Their Figures. Kinematics and Physics of Celestial Bodies, 34(1), 19-36. Tserklevych, A. L. & Shylo, Y. O. (2018). Shape of Earth’s lithosphere and geotectonics. Dopov. Nac. akad. nauk Ukr. doi: https://doi.org/10.15407/dopovidi2018.01.067 Tyapkin, K. F., & Dovbnich M. M. (2009). New rotational hypothesis of structure formation and its geological and mathematical justification. Donetsk: “Noulidzh”. Retrieved from http://www.evgengusev.narod.ru/fluidolit/tyapkin-2009.html Zharkov, V. N., & Trubitsyn, V. P. (1980). Physics of planetary subsoil. |
References (International): | Amante, C., & Eakins, B. W. (2009). ETOPO1 arcminute global relief model: procedures, data sources and analysis. Blakey R. (2016). Global Paleogeography. Retrieved from https://www2.nau.edu/rcb7/ Hofmann-Wellenhof, B., and Moritz H. (2007). "Physical surveying." M., MIIGAiK. Khain, V. E. (2010). Constructing a truly global model of Earth’s dynamics: basic principles. Geology and Geophysics, 51(6), 753–760. Retrieved from http://www.sibran.ru/upload/iblock/074/074591d1edc11bd8e6d97ad317f48974.pdf Krasovsky, F. N. (1947). On some scientific problems of astronomical geodesy in connection with the study of the structure of the hard shell of the Earth. Fav. cit, 1, 251–269. Krasovsky, F. N. (1955). Selected works. In 4 volumes. T. Iv. Levin, B. V. (2001). The role of the movements of the inner core of the Earth in tectonic processes. Fundamental problems of general tectonics. M.: Scientific world, 444–460. Mank, W., MacDonald, G., (1964). Rotating the Earth: World. Marchenko, O. M., Tretiak K. R., & Yarema N. P. (2013). Reference systems in geodesy. Lviv Polytechnic Publishing House. Mashimov, M. M. (1999). Essay on subject areas and interpenetration of geodesy, iconometry and cartography of modern times (as a matter of discussion). Proceedings of higher educational institutions. Geodesy and aerial photography, (3), 44–58. Mashimov, M. M. (1999). Physical geodesy: the metamorphosis at the beginning of the path, the revival of Krasovsky’s teachings in modern times (as a matter of discussion). Proceedings of higher educational institutions. Geodesy and aerial photography, (6), 63–76. Molodensky, M. S. (1945). The role of geophysics and geology in the study of the figure of the Earth. Sat scientific and technical and manuf. articles on geodesy, cartography, topography, aerial survey and gravimetry, (8), 24. Molodensky, M. S. (1958). Current tasks of studying the figure of the Earth. Geodesy and cartography, (7), 3–5. Moritz, H. (1994). Figure of the Earth: Theoretical geodesy and the internal structure of the Earth. Kiev: Publishing House of the National Academy of Sciences of Ukraine. Odesskyi, I. A. (2004). Rotational-pulsation regime of the Earth and its geological studies. Rashevsky P. K. (1967) Riemannian geometry and tensor analysis. M., Science. Rebetskii, Y. L. (2009, October). Estimation of stress values in the method of cataclastic analysis of shear fractures. In Doklady Earth Sciences (Vol. 428, No. 1, pp. 1202–1207). MAIK Nauka/ Interperiodica. Rebetskii, Y. L. (2016, July). Estimation of the influence of daily rotation of the earth on the stress state of the continental crust. In Doklady Earth Sciences (Vol. 469, No. 1, pp. 743–747). Pleiades Publishing. Rebetsky, Y. L. (2015). On the specific state of crustal stresses in intracontinental orogens. Geodynamics & Tectonophysics, 6(4), 437-466. Rebetsky, Y. L., & Marinin, A. V. (2006). Preseismic stress field before the Sumatra-Andaman earthquake of 26.12. 2004: a model of metastable state of rocks. Russian Geology and Geophysics, 47(11), 1173–1185. Rebetsky, Y. L., & Tatevossian, R. E. (2013). Rupture propagation in strong earthquake sources and tectonic stress field. Bulletin de la Societe Geologique de France, 184(4-5), 335–346. Scheidegger, A. (1987). Fundamentals of Geodynamics (a Russian translation), 384 pp. Nedra,Moscow. Scotese, C. R. (2017). PALEOMAP Project. Retrieved from http://www.scotese.com/ Scotese, C. R., & Wright, N. (2018). PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic PALEOMAP Project, https://www.earthbyte.org/paleodemresourcescotese-and-wright-2018/ Stovas, M. V. (1975). Selected Works. Nedra, Moscow, 155 p. Tadyeyev, O. (2017). Estimating three-dimensional earth deformation fields by methods of the projective differential geometry. Earth dilatation fields. Modern achievements in geodesic science and industry. 1(33), 53–60. Retrieved from http://ena.lp.edu.ua/bitstream/ntb/41367/2/2017v1__33__Tadyeyev_OEstimating_three_dimensional_53-60.pdf Tserklevych, A. L., Zayats, O. S., & Shylo, Y. O. (2016). Approximation of the physical surface of the earth by biaxial and triaxial ellipsoid. Geodynamics, (1), 40-49. Tserklevych, A. L., Zayats, O. S., & Shylo, Y. O. (2017). Dynamics of the Earth shape transformation. Kinematics and Physics of Celestial Bodies, 33(3), 130-141. Tserklevych, A. L., Zayats, O. S., Shylo, Y. O., & Shylo, O. M. (2018). Generation of the Stressed State of the Lithosphere of the Earth and Mars Caused by the Reorientation of Their Figures. Kinematics and Physics of Celestial Bodies, 34(1), 19-36. Tserklevych, A. L. & Shylo, Y. O. (2018). Shape of Earth’s lithosphere and geotectonics. Dopov. Nac. akad. nauk Ukr. doi: https://doi.org/10.15407/dopovidi2018.01.067 Tyapkin, K. F., & Dovbnich M. M. (2009). New rotational hypothesis of structure formation and its geological and mathematical justification. Donetsk: "Noulidzh". Retrieved from http://www.evgengusev.narod.ru/fluidolit/tyapkin-2009.html Zharkov, V. N., & Trubitsyn, V. P. (1980). Physics of planetary subsoil. |
Content type: | Article |
Appears in Collections: | Геодинаміка. – 2019. – №1(26) |
File | Description | Size | Format | |
---|---|---|---|---|
2019n1__26__Tserklevych_A_L-Earths_figure_changes_28-42.pdf | 991.13 kB | Adobe PDF | View/Open | |
2019n1__26__Tserklevych_A_L-Earths_figure_changes_28-42__COVER.png | 558.89 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.