Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/45872
Full metadata record
DC FieldValueLanguage
dc.contributor.authorЦерклевич, А. Л.-
dc.contributor.authorШило, Є. О.-
dc.contributor.authorШило, О. М.-
dc.contributor.authorTserklevych, A. L.-
dc.contributor.authorShylo, Ye. O.-
dc.contributor.authorShylo, O. M.-
dc.date.accessioned2020-02-19T13:04:11Z-
dc.date.available2020-02-19T13:04:11Z-
dc.date.created2019-06-26-
dc.date.issued2019-06-26-
dc.identifier.citationTserklevych A. L. Earth’s figure changes – geodynamic factor of stressed-deformed litosphere state / A. L. Tserklevych, Ye. O. Shylo, O. M. Shylo // Geodynamics : scientific journal. — Lviv : Lviv Polytechnic Publishing House, 2019. — No 1 (26). — P. 28–42.-
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45872-
dc.description.abstractМета цієї роботи – показати, як у процесі еволюційного саморозвитку планети в результаті дії гравітаційно-ротаційних та ендогенних сил відбувається перерозподіл мас, що приводить до трансформації фігури літосфери від сфери до двовісного та тривісного еліпсоїдів і навпаки, зміни сплющеності та переміщення полюса в геологічному часі. Визначити деформації фігури літосфери внаслідок переорієнтації полюса фігури. Методика. Фігура поверхні літосфери геометрично повернута відносно фігури геоїда і в геологічному часі орієнтація цих фігур і параметри еліпсоїдів, які їх апроксимують, змінювались. Таке розміщення фігури літосфери і фігури геоїда може створювати напруження, яке направлене на приведення розподілу мас літосфери у відповідність з фігурою геоїда. Обчислення параметрів двовісного і тривісного еліпсоїдів виконувалося на основі даних цифрової моделі поверхні Землі ETOPO1. Для моделювання трансформації фігури Землі і оцінки впливу її переорієнтації на напружено-деформований стан літосфери в далекі геологічні епохи використані дані цифрового моделювання рельєфу paleoDEM, отримані в роботі К. Скотези і Н. Врайта. Результати. Обчислені параметри двовісного і тривісного еліпсоїдів на фіксовані моменти геологічного часу. Проведений порівняльний аналіз результатів зміни фігури Землі за paleoDEM та створеними на основі растрових зображень ЦМР, побудованими за палеогеологічними даними Р. Блекі і К. Скотези. Наведені формули для обчислення зміщень і деформацій, які пов’язані з трансформацією фігури і орієнтацією верхньої оболонки планети. Приведена інтерпретація отриманих результатів досліджень планетарної динаміки фігури літосфери Землі та глобального деформаційного стану. Наукова новизна. Отримані характеристики напружено-деформаційного стану літосфери Землі за даними моделювання геопалеоре- конструкцій в геологічному часі. Така інтерпретація ролі гравітаційно-ротаційних сил у формуванні глобального поля деформацій і напружень як наслідок трансформації фігури поверхні літосфери Землі. Практична значущість. Подані результати будуть використовуватись у подальших дослідженнях, які спрямовані на вивчення планетарних характеристик нашої планети, динаміки їх змін у часі та глобального напружено-деформованого стану.-
dc.description.abstractThe purpose of this work is to show how redistribution of masses occurs as a result of gravityrotational and endogenous forces in the evolutionary self-development of the planet, which leads to the transformation of the lithosphere from the sphere to the biaxial and then to triaxial ellipsoid, and vice versa; and changes in compression and the movement of the pole in geological time. Determine the deformation of the figure of the lithosphere due to the reorientation of the figure’s pole. Methodology. The figure of the lithospheric surface is geometrically rotated relative to the figure of the geoid. The orientation of these figures and the parameters of the ellipsoids that approximate them, have changed during the geological time. Such placement of the lithospheric figure and of the geoid figure can create a stress aimed at bringing the distribution of the lithosphere masses into conformity with the figure of the geoid. The calculation of the parameters of biaxial and triaxial ellipsoids was performed based on the data of the digital Earth surface model ETOPO1. Data from the digital modeling of the paleoDEM relief, obtained in the work of K. Skotese and N. Wright have been used for modelling the transformation of the Earth’s figure and in the estimation of the impact of its reorientation on the stress-strain state of the lithosphere in the ancient geological epochs. Results The parameters of biaxial and triaxial ellipsoids were calculated for fixed moments of geological time. A comparative analysis of the results of changes in the Earth’s figure for paleoDEM and created on the basis of raster images of DSMs, built on palaeogeological data by R. Blakey and K. Skotese, were carried out. The formulas for calculation of displacements and deformations, which are related to the transformation of the figure and the orientation of the upper shell of the planet, are given. The interpretation of the research results of planetary dynamics of the Earth’s lithosphere figure and the global deformation state are presented. Scientific novelty. The characteristics of the deformation state of the Earth’s lithosphere according to modeling of geopaleo-reconstruction in geological time are obtained. Given is the interpretation of the role of gravity-rotational forces in the formation of the global field of stress and the transformation of the lithospheric figure. Practical significance. The results will be used in further researches aimed at studying the planetary characteristics of our planet, the dynamics of its changes in time, and the global tension.-
dc.format.extent28-42-
dc.language.isoen-
dc.publisherLviv Polytechnic Publishing House-
dc.relation.ispartofГеодинаміка : науковий журнал, 1 (26), 2019-
dc.relation.ispartofGeodynamics : scientific journal, 1 (26), 2019-
dc.relation.urihttps://www2.nau.edu/rcb7/-
dc.relation.urihttp://www.sibran.ru/upload/iblock/074/074591d1edc11bd8e6d97ad317f48974.pdf-
dc.relation.urihttp://www.scotese.com/-
dc.relation.urihttps://www.earthbyte.org/paleodemresourcescotese-and-wright-2018/-
dc.relation.urihttp://ena.lp.edu.ua/bitstream/ntb/41367/2/2017v1__33__Tadyeyev_OEstimating_three_dimensional_53-60.pdf-
dc.relation.urihttps://doi.org/10.15407/dopovidi2018.01.067-
dc.relation.urihttp://www.evgengusev.narod.ru/fluidolit/tyapkin-2009.html-
dc.subjectдвовісний і тривісний еліпсоїд-
dc.subjectцифрова модель рельєфу поверхні літосфери Землі-
dc.subjectнапружений стан літосфери-
dc.subjectдилатація-
dc.subjectдеформація зсуву-
dc.subjectbiaxial and triaxial ellipsoid-
dc.subjectdigital model of the relief of the Earth’s lithosphere surface-
dc.subjectstress state of the lithosphere-
dc.subjectdilatation-
dc.subjectdisplacement deformation-
dc.titleEarth’s figure changes – geodynamic factor of stressed-deformed litosphere state-
dc.title.alternativeЗміни фігури землі – геодинамічний фактор напружено-деформованого стану літосфери-
dc.typeArticle-
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2019-
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2019-
dc.rights.holder© Національний університет «Львівська політехніка», 2019-
dc.rights.holder© A. L. Tserklevych, 28 Ye. О. Shylo, O. М. Shylo-
dc.contributor.affiliationНаціональний університет “Львівська політехніка”-
dc.contributor.affiliationLviv Polytechnic National University-
dc.format.pages15-
dc.identifier.citationenTserklevych A. L. Earth’s figure changes – geodynamic factor of stressed-deformed litosphere state / A. L. Tserklevych, Ye. O. Shylo, O. M. Shylo // Geodynamics : scientific journal. — Lviv Polytechnic Publishing House, 2019. — No 1 (26). — P. 28–42.-
dc.relation.referencesAmante, C., & Eakins, B. W. (2009). ETOPO1 arcminute-
dc.relation.referencesglobal relief model: procedures, data-
dc.relation.referencessources and analysis.-
dc.relation.referencesBlakey R. (2016). Global Paleogeography. Retrieved-
dc.relation.referencesfrom https://www2.nau.edu/rcb7/-
dc.relation.referencesHofmann-Wellenhof, B., and Moritz H. (2007). “Physical-
dc.relation.referencessurveying.” M.: MIIGAiK.-
dc.relation.referencesKhain, V. E. (2010). Constructing a truly global-
dc.relation.referencesmodel of Earth’s dynamics: basic principles. Geology-
dc.relation.referencesand Geophysics, 51(6), 753–760. Retrieved-
dc.relation.referencesfrom http://www.sibran.ru/upload/iblock/074/074591d1edc11bd8e6d97ad317f48974.pdf-
dc.relation.referencesKrasovsky, F. N. (1947). On some scientific problems-
dc.relation.referencesof astronomical geodesy in connection with the-
dc.relation.referencesstudy of the structure of the hard shell of the-
dc.relation.referencesEarth. Fav. cit, 1, 251–269.-
dc.relation.referencesKrasovsky, F. N. (1955). Selected works. In 4 volumes. T. Iv.-
dc.relation.referencesLevin, B. V. (2001). The role of the movements of the-
dc.relation.referencesinner core of the Earth in tectonic processes.-
dc.relation.referencesFundamental problems of general tectonics. M.:-
dc.relation.referencesScientific world, 444–460.-
dc.relation.referencesMank, W., MacDonald, G., (1964). Rotating the Earth: World.-
dc.relation.referencesMarchenko, O. M., Tretiak K. R., & Yarema N. P. (2013). Reference systems in geodesy. Lviv-
dc.relation.referencesPolytechnic Publishing House.-
dc.relation.referencesMashimov, M. M. (1999). Essay on subject areas and-
dc.relation.referencesinterpenetration of geodesy, iconometry and cartography-
dc.relation.referencesof modern times (as a matter of discussion).-
dc.relation.referencesProceedings of higher educational institutions.-
dc.relation.referencesGeodesy and aerial photography, (3), 44–58.-
dc.relation.referencesMashimov, M. M. (1999). Physical geodesy: the-
dc.relation.referencesmetamorphosis at the beginning of the path, the-
dc.relation.referencesrevival of Krasovsky’s teachings in modern times-
dc.relation.references(as a matter of discussion). Proceedings of higher-
dc.relation.referenceseducational institutions. Geodesy and aerial photography, (6), 63–76.-
dc.relation.referencesMolodensky, M. S. (1945). The role of geophysics-
dc.relation.referencesand geology in the study of the figure of the Earth.-
dc.relation.referencesSat scientific and technical and manuf. articles on-
dc.relation.referencesgeodesy, cartography, topography, aerial survey-
dc.relation.referencesand gravimetry, (8), 24.-
dc.relation.referencesMolodensky, M. S. (1958). Current tasks of studying-
dc.relation.referencesthe figure of the Earth. Geodesy and cartography, (7), 3–5.-
dc.relation.referencesMoritz, H. (1994). Figure of the Earth: Theoretical-
dc.relation.referencesgeodesy and the internal structure of the Earth.-
dc.relation.referencesKiev: Publishing House of the National Academy-
dc.relation.referencesof Sciences of Ukraine.-
dc.relation.referencesOdesskyi, I. A. (2004). Rotational-pulsation regime of-
dc.relation.referencesthe Earth and its geological studies.-
dc.relation.referencesRashevsky P. K. (1967) Riemannian geometry and tensor analysis. M.: Science.-
dc.relation.referencesRebetskii, Y. L. (2009, October). Estimation of stress-
dc.relation.referencesvalues in the method of cataclastic analysis of shear-
dc.relation.referencesfractures. In Doklady Earth Sciences (Vol. 428, No. 1, pp. 1202–1207). MAIK Nauka/ Interperiodica.-
dc.relation.referencesRebetskii, Y. L. (2016, July). Estimation of the-
dc.relation.referencesinfluence of daily rotation of the earth on the-
dc.relation.referencesstress state of the continental crust. In Doklady-
dc.relation.referencesEarth Sciences (Vol. 469, No. 1, pp. 743–747). Pleiades Publishing.-
dc.relation.referencesRebetsky, Y. L. (2015). On the specific state of-
dc.relation.referencescrustal stresses in intracontinental orogens.-
dc.relation.referencesGeodynamics & Tectonophysics, 6(4), 437-466.-
dc.relation.referencesRebetsky, Y. L., & Marinin, A. V. (2006). Preseismic-
dc.relation.referencesstress field before the Sumatra-Andaman-
dc.relation.referencesearthquake of 26.12. 2004: a model of metastable-
dc.relation.referencesstate of rocks. Russian Geology and Geophysics, 47(11), 1173–1185.-
dc.relation.referencesRebetsky, Y. L., & Tatevossian, R. E. (2013). Rupture-
dc.relation.referencespropagation in strong earthquake sources and-
dc.relation.referencestectonic stress field. Bulletin de la Societe-
dc.relation.referencesGeologique de France, 184(4-5), 335–346.-
dc.relation.referencesScheidegger, A. (1987). Fundamentals of Geodynamics-
dc.relation.references(a Russian translation), 384 pp. Nedra,Moscow.-
dc.relation.referencesScotese, C. R. (2017). PALEOMAP Project.-
dc.relation.referencesRetrieved from http://www.scotese.com/-
dc.relation.referencesScotese, C. R., & Wright, N. (2018). PALEOMAP-
dc.relation.referencesPaleodigital Elevation Models (PaleoDEMS) for-
dc.relation.referencesthe Phanerozoic PALEOMAP Project, https://www.earthbyte.org/paleodemresourcescotese-and-wright-2018/-
dc.relation.referencesStovas, M. V. (1975). Selected Works. Nedra, Moscow, 155 p.-
dc.relation.referencesTadyeyev, O. (2017). Estimating three-dimensional-
dc.relation.referencesearth deformation fields by methods of the-
dc.relation.referencesprojective differential geometry. Earth dilatation-
dc.relation.referencesfields. Modern achievements in geodesic science-
dc.relation.referencesand industry. 1(33), 53–60. Retrieved from-
dc.relation.referenceshttp://ena.lp.edu.ua/bitstream/ntb/41367/2/2017v1__33__Tadyeyev_OEstimating_three_dimensional_53-60.pdf-
dc.relation.referencesTserklevych, A. L., Zayats, O. S., & Shylo, Y. O. (2016). Approximation of the physical surface of-
dc.relation.referencesthe earth by biaxial and triaxial ellipsoid. Geodynamics, (1), 40-49.-
dc.relation.referencesTserklevych, A. L., Zayats, O. S., & Shylo, Y. O. (2017). Dynamics of the Earth shape-
dc.relation.referencestransformation. Kinematics and Physics of Celestial Bodies, 33(3), 130-141.-
dc.relation.referencesTserklevych, A. L., Zayats, O. S., Shylo, Y. O., &-
dc.relation.referencesShylo, O. M. (2018). Generation of the Stressed-
dc.relation.referencesState of the Lithosphere of the Earth and Mars-
dc.relation.referencesCaused by the Reorientation of Their Figures.-
dc.relation.referencesKinematics and Physics of Celestial Bodies, 34(1), 19-36.-
dc.relation.referencesTserklevych, A. L. & Shylo, Y. O. (2018). Shape of-
dc.relation.referencesEarth’s lithosphere and geotectonics. Dopov. Nac.-
dc.relation.referencesakad. nauk Ukr. doi: https://doi.org/10.15407/dopovidi2018.01.067-
dc.relation.referencesTyapkin, K. F., & Dovbnich M. M. (2009). New-
dc.relation.referencesrotational hypothesis of structure formation and its-
dc.relation.referencesgeological and mathematical justification.-
dc.relation.referencesDonetsk: “Noulidzh”. Retrieved from http://www.evgengusev.narod.ru/fluidolit/tyapkin-2009.html-
dc.relation.referencesZharkov, V. N., & Trubitsyn, V. P. (1980). Physics of planetary subsoil.-
dc.relation.referencesenAmante, C., & Eakins, B. W. (2009). ETOPO1 arcminute-
dc.relation.referencesenglobal relief model: procedures, data-
dc.relation.referencesensources and analysis.-
dc.relation.referencesenBlakey R. (2016). Global Paleogeography. Retrieved-
dc.relation.referencesenfrom https://www2.nau.edu/rcb7/-
dc.relation.referencesenHofmann-Wellenhof, B., and Moritz H. (2007). "Physical-
dc.relation.referencesensurveying." M., MIIGAiK.-
dc.relation.referencesenKhain, V. E. (2010). Constructing a truly global-
dc.relation.referencesenmodel of Earth’s dynamics: basic principles. Geology-
dc.relation.referencesenand Geophysics, 51(6), 753–760. Retrieved-
dc.relation.referencesenfrom http://www.sibran.ru/upload/iblock/074/074591d1edc11bd8e6d97ad317f48974.pdf-
dc.relation.referencesenKrasovsky, F. N. (1947). On some scientific problems-
dc.relation.referencesenof astronomical geodesy in connection with the-
dc.relation.referencesenstudy of the structure of the hard shell of the-
dc.relation.referencesenEarth. Fav. cit, 1, 251–269.-
dc.relation.referencesenKrasovsky, F. N. (1955). Selected works. In 4 volumes. T. Iv.-
dc.relation.referencesenLevin, B. V. (2001). The role of the movements of the-
dc.relation.referenceseninner core of the Earth in tectonic processes.-
dc.relation.referencesenFundamental problems of general tectonics. M.:-
dc.relation.referencesenScientific world, 444–460.-
dc.relation.referencesenMank, W., MacDonald, G., (1964). Rotating the Earth: World.-
dc.relation.referencesenMarchenko, O. M., Tretiak K. R., & Yarema N. P. (2013). Reference systems in geodesy. Lviv-
dc.relation.referencesenPolytechnic Publishing House.-
dc.relation.referencesenMashimov, M. M. (1999). Essay on subject areas and-
dc.relation.referenceseninterpenetration of geodesy, iconometry and cartography-
dc.relation.referencesenof modern times (as a matter of discussion).-
dc.relation.referencesenProceedings of higher educational institutions.-
dc.relation.referencesenGeodesy and aerial photography, (3), 44–58.-
dc.relation.referencesenMashimov, M. M. (1999). Physical geodesy: the-
dc.relation.referencesenmetamorphosis at the beginning of the path, the-
dc.relation.referencesenrevival of Krasovsky’s teachings in modern times-
dc.relation.referencesen(as a matter of discussion). Proceedings of higher-
dc.relation.referenceseneducational institutions. Geodesy and aerial photography, (6), 63–76.-
dc.relation.referencesenMolodensky, M. S. (1945). The role of geophysics-
dc.relation.referencesenand geology in the study of the figure of the Earth.-
dc.relation.referencesenSat scientific and technical and manuf. articles on-
dc.relation.referencesengeodesy, cartography, topography, aerial survey-
dc.relation.referencesenand gravimetry, (8), 24.-
dc.relation.referencesenMolodensky, M. S. (1958). Current tasks of studying-
dc.relation.referencesenthe figure of the Earth. Geodesy and cartography, (7), 3–5.-
dc.relation.referencesenMoritz, H. (1994). Figure of the Earth: Theoretical-
dc.relation.referencesengeodesy and the internal structure of the Earth.-
dc.relation.referencesenKiev: Publishing House of the National Academy-
dc.relation.referencesenof Sciences of Ukraine.-
dc.relation.referencesenOdesskyi, I. A. (2004). Rotational-pulsation regime of-
dc.relation.referencesenthe Earth and its geological studies.-
dc.relation.referencesenRashevsky P. K. (1967) Riemannian geometry and tensor analysis. M., Science.-
dc.relation.referencesenRebetskii, Y. L. (2009, October). Estimation of stress-
dc.relation.referencesenvalues in the method of cataclastic analysis of shear-
dc.relation.referencesenfractures. In Doklady Earth Sciences (Vol. 428, No. 1, pp. 1202–1207). MAIK Nauka/ Interperiodica.-
dc.relation.referencesenRebetskii, Y. L. (2016, July). Estimation of the-
dc.relation.referenceseninfluence of daily rotation of the earth on the-
dc.relation.referencesenstress state of the continental crust. In Doklady-
dc.relation.referencesenEarth Sciences (Vol. 469, No. 1, pp. 743–747). Pleiades Publishing.-
dc.relation.referencesenRebetsky, Y. L. (2015). On the specific state of-
dc.relation.referencesencrustal stresses in intracontinental orogens.-
dc.relation.referencesenGeodynamics & Tectonophysics, 6(4), 437-466.-
dc.relation.referencesenRebetsky, Y. L., & Marinin, A. V. (2006). Preseismic-
dc.relation.referencesenstress field before the Sumatra-Andaman-
dc.relation.referencesenearthquake of 26.12. 2004: a model of metastable-
dc.relation.referencesenstate of rocks. Russian Geology and Geophysics, 47(11), 1173–1185.-
dc.relation.referencesenRebetsky, Y. L., & Tatevossian, R. E. (2013). Rupture-
dc.relation.referencesenpropagation in strong earthquake sources and-
dc.relation.referencesentectonic stress field. Bulletin de la Societe-
dc.relation.referencesenGeologique de France, 184(4-5), 335–346.-
dc.relation.referencesenScheidegger, A. (1987). Fundamentals of Geodynamics-
dc.relation.referencesen(a Russian translation), 384 pp. Nedra,Moscow.-
dc.relation.referencesenScotese, C. R. (2017). PALEOMAP Project.-
dc.relation.referencesenRetrieved from http://www.scotese.com/-
dc.relation.referencesenScotese, C. R., & Wright, N. (2018). PALEOMAP-
dc.relation.referencesenPaleodigital Elevation Models (PaleoDEMS) for-
dc.relation.referencesenthe Phanerozoic PALEOMAP Project, https://www.earthbyte.org/paleodemresourcescotese-and-wright-2018/-
dc.relation.referencesenStovas, M. V. (1975). Selected Works. Nedra, Moscow, 155 p.-
dc.relation.referencesenTadyeyev, O. (2017). Estimating three-dimensional-
dc.relation.referencesenearth deformation fields by methods of the-
dc.relation.referencesenprojective differential geometry. Earth dilatation-
dc.relation.referencesenfields. Modern achievements in geodesic science-
dc.relation.referencesenand industry. 1(33), 53–60. Retrieved from-
dc.relation.referencesenhttp://ena.lp.edu.ua/bitstream/ntb/41367/2/2017v1__33__Tadyeyev_OEstimating_three_dimensional_53-60.pdf-
dc.relation.referencesenTserklevych, A. L., Zayats, O. S., & Shylo, Y. O. (2016). Approximation of the physical surface of-
dc.relation.referencesenthe earth by biaxial and triaxial ellipsoid. Geodynamics, (1), 40-49.-
dc.relation.referencesenTserklevych, A. L., Zayats, O. S., & Shylo, Y. O. (2017). Dynamics of the Earth shape-
dc.relation.referencesentransformation. Kinematics and Physics of Celestial Bodies, 33(3), 130-141.-
dc.relation.referencesenTserklevych, A. L., Zayats, O. S., Shylo, Y. O., &-
dc.relation.referencesenShylo, O. M. (2018). Generation of the Stressed-
dc.relation.referencesenState of the Lithosphere of the Earth and Mars-
dc.relation.referencesenCaused by the Reorientation of Their Figures.-
dc.relation.referencesenKinematics and Physics of Celestial Bodies, 34(1), 19-36.-
dc.relation.referencesenTserklevych, A. L. & Shylo, Y. O. (2018). Shape of-
dc.relation.referencesenEarth’s lithosphere and geotectonics. Dopov. Nac.-
dc.relation.referencesenakad. nauk Ukr. doi: https://doi.org/10.15407/dopovidi2018.01.067-
dc.relation.referencesenTyapkin, K. F., & Dovbnich M. M. (2009). New-
dc.relation.referencesenrotational hypothesis of structure formation and its-
dc.relation.referencesengeological and mathematical justification.-
dc.relation.referencesenDonetsk: "Noulidzh". Retrieved from http://www.evgengusev.narod.ru/fluidolit/tyapkin-2009.html-
dc.relation.referencesenZharkov, V. N., & Trubitsyn, V. P. (1980). Physics of planetary subsoil.-
dc.citation.journalTitleГеодинаміка : науковий журнал-
dc.citation.issue1 (26)-
dc.citation.spage28-
dc.citation.epage42-
dc.coverage.placenameЛьвів-
dc.subject.udc550.311-
Appears in Collections:Геодинаміка. – 2019. – №1(26)

Files in This Item:
File Description SizeFormat 
2019n1__26__Tserklevych_A_L-Earths_figure_changes_28-42.pdf991.13 kBAdobe PDFView/Open
2019n1__26__Tserklevych_A_L-Earths_figure_changes_28-42__COVER.png558.89 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.