Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/56577
Title: Thermally Conductive Cost of the Heat-insulating Materials
Other Titles: Теплопровідна вартість теплоізоляційних матеріалів
Authors: Возняк, О. Т.
Юркевич, Ю. С.
Сухолова, І. Є.
Довбуш, О. М.
Касинець, М. Є.
Voznyak, Orest
Yurkevych, Yuriy
Sukholova, Iryna
Dovbush, Oleksandr
Kasynets, Mariana
Affiliation: Національний університет “Львівська політехніка”
Lviv Polytechnic National University
Bibliographic description (Ukraine): Thermally Conductive Cost of the Heat-insulating Materials / Orest Voznyak, Yuriy Yurkevych, Iryna Sukholova, Oleksandr Dovbush, Mariana Kasynets // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 2. — P. 92–98.
Bibliographic description (International): Thermally Conductive Cost of the Heat-insulating Materials / Orest Voznyak, Yuriy Yurkevych, Iryna Sukholova, Oleksandr Dovbush, Mariana Kasynets // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 2. — P. 92–98.
Is part of: Theory and Building Practice, 2 (2), 2020
Issue: 2
Issue Date: 23-Mar-2020
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
DOI: doi.org/10.23939/jtbp2020.02.092
Keywords: теплоізоляційні матеріали
капіталовкладення
питомі інвестиції
енергоощадність
приведені затрати
теплопровідна вартість
питома теплопровідна вартість
heat-insulating materials
capital investments
specific investments
energy saving
reduced costs
thermally conductive cost
specific thermally conductive cost
Number of pages: 7
Page range: 92-98
Start page: 92
End page: 98
Abstract: У статті представлені результати теоретичних досліджень досягнення максимального ефекту при визначенні економічно доцільного рівня теплозахисту будинків. Він повинен бути оптимальним і в теплотехнічному, і в економічному сенсі. Показником чого виступають зазначені затрати. Наведено графічні та аналітичні залежності. Результатами досліджень обґрунтовано отримання максимального ефекту при застосуванні різних теплоізоляційних матеріалів. Мета роботи – підвищити ефективність енергоощадних заходів, досягнути зниження їхньої вартості за рахунок оптимізації у співвідношенні вартості теплової енергії та теплоізоляційних матеріалів, визначити критерій оптимізації та обґрунтувати вибір оптимального теплоізоляційного матеріалу і його товщини та визначити оптимальний термічний опір, виявити шляхи підвищення ефективності енергоощадності на перспективу та обґрунтувати методику розрахунку. Розглянуто один із найпоширеніших термореноваційних заходів, а саме утеплення зовнішніх стін. Проведено економічну оцінку, що є важливим чинником певної енергоощадної пропозиції. Представлено розв’язок поставленої задачі, який охоплює дві стадії. Результатом на першій стадії є вибір оптимального матеріалу ізоляції. Друга стадія – це обґрунтування економічно доцільної товщини теплоізоляційного матеріалу. Отримані результати дають змогу досягнути підвищення ефективності енергоощадності при термореновації будинків і в енергетичному, і в економічному аспектах. У цій статті представлено результати математичного обґрунтування важливості такого чинника як теплопровідна вартість теплоізоляційних матеріалів при оптимізації їхньої товщини.
The article presents the results of theoretical research to achieve the maximum effect in determination of the economically feasible level of buildings thermal protection. It must be optimal both thermally and economically, an indicator of which there are the costs. Graphical and analytical dependences are given. The research results substantiate the maximum effect when different thermal insulating materials are used. The aim is to increase the efficiency of energy saving measures, reduce their cost by optimizing the cost of thermal energy and insulating materials, determining the optimization criteria and justification for choice the optimal insulating material and its thickness, and determining the optimal thermal resistance, identifying ways to improve energy efficiency and substantiation of the calculation method. One of the most common thermal renovation measures, namely insulation of external walls, is considered. An economic assessment has been conducted, which is an important factor in a certain energy-saving proposition. The solution of the problem is presented, which includes two stages. The result of the first stage is the selection of the optimal heat-insulating material. The second stage is a substantiation of economically expedient thickness of the heatinsulating material. The obtained results make it possible to increase the efficiency of energy saving in thermal renovation of buildings taking into account both energy and economic aspects. In this paper the results of mathematical provement of such factor importance as the thermally conductive cost of the heat-insulating material at their thickness optimization are presented. Determining for the establishment of the normative thermal resistance in the future is the ratio of the cost of thermal energy to the thermal conductivity of the insulating material.
URI: https://ena.lpnu.ua/handle/ntb/56577
Copyright owner: © Національний університет “Львівська політехніка”, 2020
© Voznyak O., Yurkevych Yu., Sukholova I., Dovbush O., Kasynets M., 2020
References (Ukraine): Basok, B., Davydenko, B., Farenuyk, G., & Goncharuk, S. (2014). Computational Modeling of the Temperature
Regime in a Room with a Two-Panel Radiator. Journal of Engineering Physics and Thermophysics, Vol. 87, Issue 6, 1433–1437.
Basok, B., Davydenko, B., Isaev, S., Goncharuk, S., & Kuzhel’, L. (2016). Numerical Modeling of Heat Transfer
Through a Triple-Pane Window. Journal of Engineering Physics and Thermophysics, Vol. 89, Issue 5, 1, 1277–1283.
Bilous, I., Deshko, V., & Sukhodub, I. (2018). Parametric analysis of external and internal factors influence
on building energy performance using non-linear multivariate regression models. Journal of Building Engineering,
Vol. 20, 327–336.
Bilous, I., Deshko, V., & Sukhodub, I. (2016). Building inside air temperature parametric study. Magazine of
Civil Engineering, Vol. 68, Issue 8, 65–75.
Buyak, N., Deshko, V., & Sukhodub, I. (2017). Buildings energy use and human thermal comfort according
to energy and exergy approach. Energy and Buildings, Vol. 146, 1, 172–181.
Deshko, V., & Buyak, N. (2016). A model of human thermal comfort for analysing the energy performance
of buildings. Eastern-European Journal of Enterprise Technologies, Vol. 4, Issue 8–82, 42–48.
Dovhaliuk, V. B., & Міleikovskyi, V. O. (2007). Efficiency of organization of air exchange in heat-stressed
premises in compressed conditions, Journal: Building of Ukraine, No. 3, 36. (in Ukrainian).
Dovhaliuk, V. B., & Міleikovskyi, V. O. (2008). Estimated model of non-isothermal stream, which is laid
out on a convex cylindrical surface. Ventilation, Illumination and Heat and Gas Supply: Scientific and Technical
Collection, Issue 12, Kyiv: KNUBA, 11–32 (in Ukrainian).
Gumen, O. M., Dovhaliuk, V. B., & Міleikovskyi, V. O. (2016). Determination of the intensity of turbulence
of streams with large-scale vortices on the basis of geometric and kinematic analysis of macrostructure. Proc. of
Lviv Polytechnic National University: The theory and building practice, No. 844, 76–83 (in Ukrainian).
Kapalo, P., Voznyak, O., Yurkevych, Yu., Myroniuk, Kh., & Sukholova, I. (2018). Ensuring comfort microclimate in the classrooms under condition of the required air
exchange. Eastern European Journal of Enterprise Technologies, Vol. 5/10 (95), 6–14.
Voznyak, O., Myroniuk, Kh., & Dovbush, O. (2005). Relationship between a Person Heat Exchange and
Indoor Climate. Selected scientific Papers 10th Rzeszow-Lviv-Kosice Conference 2005 Supplementary Issue. Technical
University of Kosice. 148–152.
Voznyak, O. T., Sukholova, I. E., Savchenko, O. O., & Dovbush, O. M. (2017). Thermal renovation of the
air conditioning system of industrial premises. Bulletin of the Odessa State Academy of Civil Engineering and
Architecture, No. 68, 114–120 (in Ukrainian).
Voznyak, O. T, Yurkevych, Yu. S., & Zhelykh, V. M. (2010). Analysis of economic effects in thermal
modernization of buildings. Ventilation, Illumination and Heat and Gas Supply: Scientific and Technical Collection.
KNUBA, 14, 79–89 (in Ukrainian).
Zhelykh, V., Voznyak, O., Kozak, Kh., Dovbush, O., & Kasynets, M. Сivil buildings heating system thermal
renewal. Proc. of Lviv Polytechnic National University: The theory and building practice. No. 1(2), 7–13.
Voznyak, O. T., Savchenko, O. O., Yurkevych, Yu. S., & Dovbush, O. M. (2018). Thermal renovation of the
gas supply system of industrial premises. International. scientific and technical Journal: Modern technologies,
materials and structures in construction. Vinnytsia NTU, 2(25), 178–184 (in Ukrainian).
Voznyak, O. T., Sukholova, I. E., Yurkevych, Yu. S., & Dovbush, O. M. (2018). Thermal modernization of
industrial rooms air conditioning system. Proc. of Lviv Polytechnic National University: The theory and building
practice, No. 888, 36–42.
Thermal insulation of buildings. DBN В.2.6-31:2016. K.: Ministry of Construction of Architecture and
Housing and Communal Services of Ukraine (in Ukrainian).
Methods of selection of heat-insulating material for warming of buildings. DSTU Б В.2.6-189:2013. K.:
Ministry of Regional Development of Ukraine (in Ukrainian).
References (International): Basok, B., Davydenko, B., Farenuyk, G., & Goncharuk, S. (2014). Computational Modeling of the Temperature
Regime in a Room with a Two-Panel Radiator. Journal of Engineering Physics and Thermophysics, Vol. 87, Issue 6, 1433–1437.
Basok, B., Davydenko, B., Isaev, S., Goncharuk, S., & Kuzhel’, L. (2016). Numerical Modeling of Heat Transfer
Through a Triple-Pane Window. Journal of Engineering Physics and Thermophysics, Vol. 89, Issue 5, 1, 1277–1283.
Bilous, I., Deshko, V., & Sukhodub, I. (2018). Parametric analysis of external and internal factors influence
on building energy performance using non-linear multivariate regression models. Journal of Building Engineering,
Vol. 20, 327–336.
Bilous, I., Deshko, V., & Sukhodub, I. (2016). Building inside air temperature parametric study. Magazine of
Civil Engineering, Vol. 68, Issue 8, 65–75.
Buyak, N., Deshko, V., & Sukhodub, I. (2017). Buildings energy use and human thermal comfort according
to energy and exergy approach. Energy and Buildings, Vol. 146, 1, 172–181.
Deshko, V., & Buyak, N. (2016). A model of human thermal comfort for analysing the energy performance
of buildings. Eastern-European Journal of Enterprise Technologies, Vol. 4, Issue 8–82, 42–48.
Dovhaliuk, V. B., & Mileikovskyi, V. O. (2007). Efficiency of organization of air exchange in heat-stressed
premises in compressed conditions, Journal: Building of Ukraine, No. 3, 36. (in Ukrainian).
Dovhaliuk, V. B., & Mileikovskyi, V. O. (2008). Estimated model of non-isothermal stream, which is laid
out on a convex cylindrical surface. Ventilation, Illumination and Heat and Gas Supply: Scientific and Technical
Collection, Issue 12, Kyiv: KNUBA, 11–32 (in Ukrainian).
Gumen, O. M., Dovhaliuk, V. B., & Mileikovskyi, V. O. (2016). Determination of the intensity of turbulence
of streams with large-scale vortices on the basis of geometric and kinematic analysis of macrostructure. Proc. of
Lviv Polytechnic National University: The theory and building practice, No. 844, 76–83 (in Ukrainian).
Kapalo, P., Voznyak, O., Yurkevych, Yu., Myroniuk, Kh., & Sukholova, I. (2018). Ensuring comfort microclimate in the classrooms under condition of the required air
exchange. Eastern European Journal of Enterprise Technologies, Vol. 5/10 (95), 6–14.
Voznyak, O., Myroniuk, Kh., & Dovbush, O. (2005). Relationship between a Person Heat Exchange and
Indoor Climate. Selected scientific Papers 10th Rzeszow-Lviv-Kosice Conference 2005 Supplementary Issue. Technical
University of Kosice. 148–152.
Voznyak, O. T., Sukholova, I. E., Savchenko, O. O., & Dovbush, O. M. (2017). Thermal renovation of the
air conditioning system of industrial premises. Bulletin of the Odessa State Academy of Civil Engineering and
Architecture, No. 68, 114–120 (in Ukrainian).
Voznyak, O. T, Yurkevych, Yu. S., & Zhelykh, V. M. (2010). Analysis of economic effects in thermal
modernization of buildings. Ventilation, Illumination and Heat and Gas Supply: Scientific and Technical Collection.
KNUBA, 14, 79–89 (in Ukrainian).
Zhelykh, V., Voznyak, O., Kozak, Kh., Dovbush, O., & Kasynets, M. Sivil buildings heating system thermal
renewal. Proc. of Lviv Polytechnic National University: The theory and building practice. No. 1(2), 7–13.
Voznyak, O. T., Savchenko, O. O., Yurkevych, Yu. S., & Dovbush, O. M. (2018). Thermal renovation of the
gas supply system of industrial premises. International. scientific and technical Journal: Modern technologies,
materials and structures in construction. Vinnytsia NTU, 2(25), 178–184 (in Ukrainian).
Voznyak, O. T., Sukholova, I. E., Yurkevych, Yu. S., & Dovbush, O. M. (2018). Thermal modernization of
industrial rooms air conditioning system. Proc. of Lviv Polytechnic National University: The theory and building
practice, No. 888, 36–42.
Thermal insulation of buildings. DBN V.2.6-31:2016. K., Ministry of Construction of Architecture and
Housing and Communal Services of Ukraine (in Ukrainian).
Methods of selection of heat-insulating material for warming of buildings. DSTU B V.2.6-189:2013. K.:
Ministry of Regional Development of Ukraine (in Ukrainian).
Content type: Article
Appears in Collections:Theory and Building Practice. – 2020. – Vol. 2, No. 2

Files in This Item:
File Description SizeFormat 
2020v2n2_Voznyak_O-Thermally_Conductive_Cost_92-98.pdf631.05 kBAdobe PDFView/Open
2020v2n2_Voznyak_O-Thermally_Conductive_Cost_92-98__COVER.png439.13 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.