Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/56577
Full metadata record
DC FieldValueLanguage
dc.contributor.authorВозняк, О. Т.
dc.contributor.authorЮркевич, Ю. С.
dc.contributor.authorСухолова, І. Є.
dc.contributor.authorДовбуш, О. М.
dc.contributor.authorКасинець, М. Є.
dc.contributor.authorVoznyak, Orest
dc.contributor.authorYurkevych, Yuriy
dc.contributor.authorSukholova, Iryna
dc.contributor.authorDovbush, Oleksandr
dc.contributor.authorKasynets, Mariana
dc.date.accessioned2021-12-21T13:15:57Z-
dc.date.available2021-12-21T13:15:57Z-
dc.date.created2020-03-23
dc.date.issued2020-03-23
dc.identifier.citationThermally Conductive Cost of the Heat-insulating Materials / Orest Voznyak, Yuriy Yurkevych, Iryna Sukholova, Oleksandr Dovbush, Mariana Kasynets // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 2. — P. 92–98.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56577-
dc.description.abstractУ статті представлені результати теоретичних досліджень досягнення максимального ефекту при визначенні економічно доцільного рівня теплозахисту будинків. Він повинен бути оптимальним і в теплотехнічному, і в економічному сенсі. Показником чого виступають зазначені затрати. Наведено графічні та аналітичні залежності. Результатами досліджень обґрунтовано отримання максимального ефекту при застосуванні різних теплоізоляційних матеріалів. Мета роботи – підвищити ефективність енергоощадних заходів, досягнути зниження їхньої вартості за рахунок оптимізації у співвідношенні вартості теплової енергії та теплоізоляційних матеріалів, визначити критерій оптимізації та обґрунтувати вибір оптимального теплоізоляційного матеріалу і його товщини та визначити оптимальний термічний опір, виявити шляхи підвищення ефективності енергоощадності на перспективу та обґрунтувати методику розрахунку. Розглянуто один із найпоширеніших термореноваційних заходів, а саме утеплення зовнішніх стін. Проведено економічну оцінку, що є важливим чинником певної енергоощадної пропозиції. Представлено розв’язок поставленої задачі, який охоплює дві стадії. Результатом на першій стадії є вибір оптимального матеріалу ізоляції. Друга стадія – це обґрунтування економічно доцільної товщини теплоізоляційного матеріалу. Отримані результати дають змогу досягнути підвищення ефективності енергоощадності при термореновації будинків і в енергетичному, і в економічному аспектах. У цій статті представлено результати математичного обґрунтування важливості такого чинника як теплопровідна вартість теплоізоляційних матеріалів при оптимізації їхньої товщини.
dc.description.abstractThe article presents the results of theoretical research to achieve the maximum effect in determination of the economically feasible level of buildings thermal protection. It must be optimal both thermally and economically, an indicator of which there are the costs. Graphical and analytical dependences are given. The research results substantiate the maximum effect when different thermal insulating materials are used. The aim is to increase the efficiency of energy saving measures, reduce their cost by optimizing the cost of thermal energy and insulating materials, determining the optimization criteria and justification for choice the optimal insulating material and its thickness, and determining the optimal thermal resistance, identifying ways to improve energy efficiency and substantiation of the calculation method. One of the most common thermal renovation measures, namely insulation of external walls, is considered. An economic assessment has been conducted, which is an important factor in a certain energy-saving proposition. The solution of the problem is presented, which includes two stages. The result of the first stage is the selection of the optimal heat-insulating material. The second stage is a substantiation of economically expedient thickness of the heatinsulating material. The obtained results make it possible to increase the efficiency of energy saving in thermal renovation of buildings taking into account both energy and economic aspects. In this paper the results of mathematical provement of such factor importance as the thermally conductive cost of the heat-insulating material at their thickness optimization are presented. Determining for the establishment of the normative thermal resistance in the future is the ratio of the cost of thermal energy to the thermal conductivity of the insulating material.
dc.format.extent92-98
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 2 (2), 2020
dc.subjectтеплоізоляційні матеріали
dc.subjectкапіталовкладення
dc.subjectпитомі інвестиції
dc.subjectенергоощадність
dc.subjectприведені затрати
dc.subjectтеплопровідна вартість
dc.subjectпитома теплопровідна вартість
dc.subjectheat-insulating materials
dc.subjectcapital investments
dc.subjectspecific investments
dc.subjectenergy saving
dc.subjectreduced costs
dc.subjectthermally conductive cost
dc.subjectspecific thermally conductive cost
dc.titleThermally Conductive Cost of the Heat-insulating Materials
dc.title.alternativeТеплопровідна вартість теплоізоляційних матеріалів
dc.typeArticle
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Voznyak O., Yurkevych Yu., Sukholova I., Dovbush O., Kasynets M., 2020
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages7
dc.identifier.citationenThermally Conductive Cost of the Heat-insulating Materials / Orest Voznyak, Yuriy Yurkevych, Iryna Sukholova, Oleksandr Dovbush, Mariana Kasynets // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 2. — P. 92–98.
dc.identifier.doidoi.org/10.23939/jtbp2020.02.092
dc.relation.referencesBasok, B., Davydenko, B., Farenuyk, G., & Goncharuk, S. (2014). Computational Modeling of the Temperature
dc.relation.referencesRegime in a Room with a Two-Panel Radiator. Journal of Engineering Physics and Thermophysics, Vol. 87, Issue 6, 1433–1437.
dc.relation.referencesBasok, B., Davydenko, B., Isaev, S., Goncharuk, S., & Kuzhel’, L. (2016). Numerical Modeling of Heat Transfer
dc.relation.referencesThrough a Triple-Pane Window. Journal of Engineering Physics and Thermophysics, Vol. 89, Issue 5, 1, 1277–1283.
dc.relation.referencesBilous, I., Deshko, V., & Sukhodub, I. (2018). Parametric analysis of external and internal factors influence
dc.relation.referenceson building energy performance using non-linear multivariate regression models. Journal of Building Engineering,
dc.relation.referencesVol. 20, 327–336.
dc.relation.referencesBilous, I., Deshko, V., & Sukhodub, I. (2016). Building inside air temperature parametric study. Magazine of
dc.relation.referencesCivil Engineering, Vol. 68, Issue 8, 65–75.
dc.relation.referencesBuyak, N., Deshko, V., & Sukhodub, I. (2017). Buildings energy use and human thermal comfort according
dc.relation.referencesto energy and exergy approach. Energy and Buildings, Vol. 146, 1, 172–181.
dc.relation.referencesDeshko, V., & Buyak, N. (2016). A model of human thermal comfort for analysing the energy performance
dc.relation.referencesof buildings. Eastern-European Journal of Enterprise Technologies, Vol. 4, Issue 8–82, 42–48.
dc.relation.referencesDovhaliuk, V. B., & Міleikovskyi, V. O. (2007). Efficiency of organization of air exchange in heat-stressed
dc.relation.referencespremises in compressed conditions, Journal: Building of Ukraine, No. 3, 36. (in Ukrainian).
dc.relation.referencesDovhaliuk, V. B., & Міleikovskyi, V. O. (2008). Estimated model of non-isothermal stream, which is laid
dc.relation.referencesout on a convex cylindrical surface. Ventilation, Illumination and Heat and Gas Supply: Scientific and Technical
dc.relation.referencesCollection, Issue 12, Kyiv: KNUBA, 11–32 (in Ukrainian).
dc.relation.referencesGumen, O. M., Dovhaliuk, V. B., & Міleikovskyi, V. O. (2016). Determination of the intensity of turbulence
dc.relation.referencesof streams with large-scale vortices on the basis of geometric and kinematic analysis of macrostructure. Proc. of
dc.relation.referencesLviv Polytechnic National University: The theory and building practice, No. 844, 76–83 (in Ukrainian).
dc.relation.referencesKapalo, P., Voznyak, O., Yurkevych, Yu., Myroniuk, Kh., & Sukholova, I. (2018). Ensuring comfort microclimate in the classrooms under condition of the required air
dc.relation.referencesexchange. Eastern European Journal of Enterprise Technologies, Vol. 5/10 (95), 6–14.
dc.relation.referencesVoznyak, O., Myroniuk, Kh., & Dovbush, O. (2005). Relationship between a Person Heat Exchange and
dc.relation.referencesIndoor Climate. Selected scientific Papers 10th Rzeszow-Lviv-Kosice Conference 2005 Supplementary Issue. Technical
dc.relation.referencesUniversity of Kosice. 148–152.
dc.relation.referencesVoznyak, O. T., Sukholova, I. E., Savchenko, O. O., & Dovbush, O. M. (2017). Thermal renovation of the
dc.relation.referencesair conditioning system of industrial premises. Bulletin of the Odessa State Academy of Civil Engineering and
dc.relation.referencesArchitecture, No. 68, 114–120 (in Ukrainian).
dc.relation.referencesVoznyak, O. T, Yurkevych, Yu. S., & Zhelykh, V. M. (2010). Analysis of economic effects in thermal
dc.relation.referencesmodernization of buildings. Ventilation, Illumination and Heat and Gas Supply: Scientific and Technical Collection.
dc.relation.referencesKNUBA, 14, 79–89 (in Ukrainian).
dc.relation.referencesZhelykh, V., Voznyak, O., Kozak, Kh., Dovbush, O., & Kasynets, M. Сivil buildings heating system thermal
dc.relation.referencesrenewal. Proc. of Lviv Polytechnic National University: The theory and building practice. No. 1(2), 7–13.
dc.relation.referencesVoznyak, O. T., Savchenko, O. O., Yurkevych, Yu. S., & Dovbush, O. M. (2018). Thermal renovation of the
dc.relation.referencesgas supply system of industrial premises. International. scientific and technical Journal: Modern technologies,
dc.relation.referencesmaterials and structures in construction. Vinnytsia NTU, 2(25), 178–184 (in Ukrainian).
dc.relation.referencesVoznyak, O. T., Sukholova, I. E., Yurkevych, Yu. S., & Dovbush, O. M. (2018). Thermal modernization of
dc.relation.referencesindustrial rooms air conditioning system. Proc. of Lviv Polytechnic National University: The theory and building
dc.relation.referencespractice, No. 888, 36–42.
dc.relation.referencesThermal insulation of buildings. DBN В.2.6-31:2016. K.: Ministry of Construction of Architecture and
dc.relation.referencesHousing and Communal Services of Ukraine (in Ukrainian).
dc.relation.referencesMethods of selection of heat-insulating material for warming of buildings. DSTU Б В.2.6-189:2013. K.:
dc.relation.referencesMinistry of Regional Development of Ukraine (in Ukrainian).
dc.relation.referencesenBasok, B., Davydenko, B., Farenuyk, G., & Goncharuk, S. (2014). Computational Modeling of the Temperature
dc.relation.referencesenRegime in a Room with a Two-Panel Radiator. Journal of Engineering Physics and Thermophysics, Vol. 87, Issue 6, 1433–1437.
dc.relation.referencesenBasok, B., Davydenko, B., Isaev, S., Goncharuk, S., & Kuzhel’, L. (2016). Numerical Modeling of Heat Transfer
dc.relation.referencesenThrough a Triple-Pane Window. Journal of Engineering Physics and Thermophysics, Vol. 89, Issue 5, 1, 1277–1283.
dc.relation.referencesenBilous, I., Deshko, V., & Sukhodub, I. (2018). Parametric analysis of external and internal factors influence
dc.relation.referencesenon building energy performance using non-linear multivariate regression models. Journal of Building Engineering,
dc.relation.referencesenVol. 20, 327–336.
dc.relation.referencesenBilous, I., Deshko, V., & Sukhodub, I. (2016). Building inside air temperature parametric study. Magazine of
dc.relation.referencesenCivil Engineering, Vol. 68, Issue 8, 65–75.
dc.relation.referencesenBuyak, N., Deshko, V., & Sukhodub, I. (2017). Buildings energy use and human thermal comfort according
dc.relation.referencesento energy and exergy approach. Energy and Buildings, Vol. 146, 1, 172–181.
dc.relation.referencesenDeshko, V., & Buyak, N. (2016). A model of human thermal comfort for analysing the energy performance
dc.relation.referencesenof buildings. Eastern-European Journal of Enterprise Technologies, Vol. 4, Issue 8–82, 42–48.
dc.relation.referencesenDovhaliuk, V. B., & Mileikovskyi, V. O. (2007). Efficiency of organization of air exchange in heat-stressed
dc.relation.referencesenpremises in compressed conditions, Journal: Building of Ukraine, No. 3, 36. (in Ukrainian).
dc.relation.referencesenDovhaliuk, V. B., & Mileikovskyi, V. O. (2008). Estimated model of non-isothermal stream, which is laid
dc.relation.referencesenout on a convex cylindrical surface. Ventilation, Illumination and Heat and Gas Supply: Scientific and Technical
dc.relation.referencesenCollection, Issue 12, Kyiv: KNUBA, 11–32 (in Ukrainian).
dc.relation.referencesenGumen, O. M., Dovhaliuk, V. B., & Mileikovskyi, V. O. (2016). Determination of the intensity of turbulence
dc.relation.referencesenof streams with large-scale vortices on the basis of geometric and kinematic analysis of macrostructure. Proc. of
dc.relation.referencesenLviv Polytechnic National University: The theory and building practice, No. 844, 76–83 (in Ukrainian).
dc.relation.referencesenKapalo, P., Voznyak, O., Yurkevych, Yu., Myroniuk, Kh., & Sukholova, I. (2018). Ensuring comfort microclimate in the classrooms under condition of the required air
dc.relation.referencesenexchange. Eastern European Journal of Enterprise Technologies, Vol. 5/10 (95), 6–14.
dc.relation.referencesenVoznyak, O., Myroniuk, Kh., & Dovbush, O. (2005). Relationship between a Person Heat Exchange and
dc.relation.referencesenIndoor Climate. Selected scientific Papers 10th Rzeszow-Lviv-Kosice Conference 2005 Supplementary Issue. Technical
dc.relation.referencesenUniversity of Kosice. 148–152.
dc.relation.referencesenVoznyak, O. T., Sukholova, I. E., Savchenko, O. O., & Dovbush, O. M. (2017). Thermal renovation of the
dc.relation.referencesenair conditioning system of industrial premises. Bulletin of the Odessa State Academy of Civil Engineering and
dc.relation.referencesenArchitecture, No. 68, 114–120 (in Ukrainian).
dc.relation.referencesenVoznyak, O. T, Yurkevych, Yu. S., & Zhelykh, V. M. (2010). Analysis of economic effects in thermal
dc.relation.referencesenmodernization of buildings. Ventilation, Illumination and Heat and Gas Supply: Scientific and Technical Collection.
dc.relation.referencesenKNUBA, 14, 79–89 (in Ukrainian).
dc.relation.referencesenZhelykh, V., Voznyak, O., Kozak, Kh., Dovbush, O., & Kasynets, M. Sivil buildings heating system thermal
dc.relation.referencesenrenewal. Proc. of Lviv Polytechnic National University: The theory and building practice. No. 1(2), 7–13.
dc.relation.referencesenVoznyak, O. T., Savchenko, O. O., Yurkevych, Yu. S., & Dovbush, O. M. (2018). Thermal renovation of the
dc.relation.referencesengas supply system of industrial premises. International. scientific and technical Journal: Modern technologies,
dc.relation.referencesenmaterials and structures in construction. Vinnytsia NTU, 2(25), 178–184 (in Ukrainian).
dc.relation.referencesenVoznyak, O. T., Sukholova, I. E., Yurkevych, Yu. S., & Dovbush, O. M. (2018). Thermal modernization of
dc.relation.referencesenindustrial rooms air conditioning system. Proc. of Lviv Polytechnic National University: The theory and building
dc.relation.referencesenpractice, No. 888, 36–42.
dc.relation.referencesenThermal insulation of buildings. DBN V.2.6-31:2016. K., Ministry of Construction of Architecture and
dc.relation.referencesenHousing and Communal Services of Ukraine (in Ukrainian).
dc.relation.referencesenMethods of selection of heat-insulating material for warming of buildings. DSTU B V.2.6-189:2013. K.:
dc.relation.referencesenMinistry of Regional Development of Ukraine (in Ukrainian).
dc.citation.issue2
dc.citation.spage92
dc.citation.epage98
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
Appears in Collections:Theory and Building Practice. – 2020. – Vol. 2, No. 2

Files in This Item:
File Description SizeFormat 
2020v2n2_Voznyak_O-Thermally_Conductive_Cost_92-98.pdf631.05 kBAdobe PDFView/Open
2020v2n2_Voznyak_O-Thermally_Conductive_Cost_92-98__COVER.png439.13 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.