Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/56539
Title: Analysis of calculating level of service for pedestrians
Other Titles: Аналіз розрахунку рівня обслуговування для пішоходів
Authors: Prykhodko, Vsevolod
Vikovych, Ihor
Affiliation: Lviv Polytechnic National University
Bibliographic description (Ukraine): Prykhodko V. Analysis of calculating level of service for pedestrians / Vsevolod Prykhodko, Ihor Vikovych // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 2. — No 1. — P. 50–59.
Bibliographic description (International): Prykhodko V. Analysis of calculating level of service for pedestrians / Vsevolod Prykhodko, Ihor Vikovych // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 2. — No 1. — P. 50–59.
Is part of: Transport Technologies, 1 (2), 2021
Issue: 1
Issue Date: 10-Mar-2021
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
DOI: doi.org/ 10.23939/tt2021.01.050
Keywords: пішохід
пішохідні споруди
перехрестя із великою торгівлею
пішохідний тротуар
інструкція про пропускну здатність дороги
pedestrian
pedestrian facilities
heavily trafficked intersections
pedestrian sidewalk
Number of pages: 10
Page range: 50-59
Start page: 50
End page: 59
Abstract: Розглянуто декілька методів оцінювання якості роботи пішохідних об’єктів на основі рівня їх обслуговування. Важлива проблема сьогодні – наскільки пішохідні шляхи відповідають рівню обслуговування. Оцінювання цього рівня є найпоширенішим методом визначення якості об’єктів, пов’язаних із пішохіднимм рухом. Місця, де висока ймовірність конфлікту між різними потоками, часто називають перетинами. І навіть більше, на таких перетинах, зокрема зі складними дорожніми умовами та із рухом велосипедистів, автомобілів та інших транспортних засобів, учасники дорожнього руху стикаються зі складними ситуаціями, коли кожен із них повинен бути впевнений у власній безпеці та передбачати подальші дії й рішення інших користувачів. Розглянуто найпоширеніші та загальновизнані методи оцінювання рівня сервісу на пішохідних шляхах, зокрема: метод інструкції про пропускну здатність автомобільних доріг 2000 р., австралійський метод, метод якості поїздки, модель Ландіса та підхід спільного аналізу. Транспортні засоби, затримка сигналів та взаємодія пішоходів і велосипедистів визначені як основні чинники, що впливають на рівень сервісу пішоходів на переходах. Аналіз різних методів дає змогу оцінити та ідентифікувати рівень обслуговування та визначити характеристики, які можуть допомогти у вирішенні питань, що стосуються комфорту руху пішоходів. В окремих методах розглянутоі принципи руху транспортних засобів та взаємодія їх із пішоходами. Інші методи більшою мірою стосуються дизайну об’єктів пішохідного середовища, ніж фактичного руху пішоходів. Щоб забезпечити повне розуміння методології визначення рівня обслуговування пішохідних об’єктів, потрібно аналізувати та порівнювати розрахункові показники, отримані різними методими.
In this paper, several methods of the assessment of pedestrian objects operation based on the level of service are reviewed. Today, there is a problem that should be assessed, particularly how pedestrian paths respond the level of service. Assessment of this level is the most widespread method of determination the objects` quality that relate to the pedestrian operations. Places, where a significant probability of conflict between different flows and their users, are often called intersections. Moreover, on such intersections, particularly with complex road conditions and on which the movement of cyclists, cars, and different vehicles is present, road users face with complicated situations when every of them should be sure in his safety and forecast further actions and decisions of other road users. The most widespread and generally accepted methods of assessment of level of service on pedestrian path, particularly: Highway capacity manual 2000 method, Australian method, method of the trip quality, Landice model and common approach analysis. Vehicles, signal delay, and interaction of pedestrians and cyclists were determined as the main factors that have impact on the level of service of pedestrians at the intersections. Analysis of different methods in the paper allows assessing and identifying the level of service determining the characteristics that could help in solving the questions concerning the comfort of pedestrian movement. In the range of these methods, the principles of vehicles movement and interaction with pedestrians are also reviewed. Other methods relate more to the design of the objects of pedestrian environment than factual movement of pedestrians. To form the whole understanding of the methodology of determination of the level of service of pedestrian objects, we should analyze and compare the values, obtained by different methods.
URI: https://ena.lpnu.ua/handle/ntb/56539
Copyright owner: © Національний університет “Львівська політехніка”, 2021
© Prykhodko V., Vikovych I., 2021
References (Ukraine): 1. Cepolina, E. M., Menichini, F., & Rojas, P. G. (2017) Pedestrian Level of Service: the Impact of Social Groups on Pedestrian Flow Characteristics Pedestrian Level of Service: the Impact of Social Groups on Pedestrian Flow Characteristics (in English)
2. Smothers, A., Thomas, J., Fang, W., Young, S., Morrissey, E. A., Beaver, M., & Melnick, H. (2021). Limiting barriers to exercise through the development of a faith-based community walking program. Journal of Interprofessional Education & Practice, 100428 (in English)
3. Zuniga-Garcia, N., Ross, H. W., & Machemehl, R. B. (2018). Multimodal Level of Service Methodologies: Evaluation of the Multimodal Performance of Arterial Corridors. Transportation Research Record, 2672(15), 142–154 (in English)
4. Garau, C., & Pavan, V. M. (2018). Evaluating urban quality: Indicators and assessment tools for smart sustainable cities. Sustainability, 10(3), 575 (in English)
5. Ji, H., Peng, Y., & Ding, W. (2019). A Quantitative Study of Geometric Characteristics of Urban Space Based on the Correlation with Microclimate. Sustainability, 11(18), 4951 (in English)
6. Reul, J., Grube, T., & Stolten, D. (2021). Urban transportation at an inflection point: An analysis of potential influencing factors. Transportation Research Part D: Transport and Environment, 92, 102733 (in English)
7. Kadali, B. R., & Vedagiri, P. (2016). Review of pedestrian level of service: Perspective in developing countries. Transportation Research Record, 2581(1), 37–47 (in English)
8. Landis, B. W., Vattikuti, V. R., Ottenberg, R. M., McLeod, D. S., & Guttenplan, M. (2001). Modeling the roadside walking environment: pedestrian level of service. Transportation research record, 1773(1), 82-88 (in English)
9. Gallin, N. (2001). Quantifying pedestrian friendliness--guidelines for assessing pedestrian level of service. Road & Transport Research, 10(1), 47 (in English)
10. Guensler, R., Grossman, A., Frackelton, A., Elango, V., Xu, Y., Toth, C., ... & Sadana, R. (2015). Automated sidewalk quality and safety assessment system (No. FHWA-GA-15-1216). Georgia. Department of Transportation. Office of Research (in English)
11. Al-Khateeb, G. G. (2020). Highway Planning, Survey, and Design. CRC Press (in English)
12. Banerjee, A., Maurya, A. K., & Lämmel, G. (2018). A review of pedestrian flow characteristics and level of service over different pedestrian facilities. Collective Dynamics, 3, 1–52 (in English)
13. Naga Raju, S. (2015). Improving the efficiency of energy recovery systems of wheeled vehicles with electric drive. Mester’s thesis. Rourkela: National Institute of Technology (in English).
14. Raad, N., & Burke, M. (2017, November). Pedestrian Levels-of-Service tools: problems of conception, factor identification, measurement and usefulness. In 39th Australasian Transport Research Forum (ATRF 2017), Auckland , 27–29 (in English)
15. Peterson, S. J. (2020). The Transportation Research Board, 1920 –2020: Everyone Interested Is Invited. Washington, DC: The National Academies Press (in English)
16. Maity, G., & Roy, S. K. (2018). Multiobjective transportation problem using fuzzy decision variable through multi-choice programming. Intelligent Transportation and Planning: Breakthroughs in Research and Practice, IGI Global, 866–882 (in English)
17. Cepolina, E. M., Menichini, F., & Rojas, P. G. (2018). Level of service of pedestrian facilities: Modelling human comfort perception in the evaluation of pedestrian behaviour patterns. Transportation research part F: traffic psychology and behaviour, 58, 365–381 (in English)
18. Nag, D., Goswami, A. K., Gupta, A., & Sen, J. (2020). Assessing urban sidewalk networks based on three constructs: a synthesis of pedestrian level of service literature. Transport reviews, 40(2), 204–240 (in English)
19. Hyndman R. and Athanasopoulos G. Forecasting: principles and practice. Retrieved from https:/OTexts.com/fpp2/ (in English)
References (International): 1. Cepolina, E. M., Menichini, F., & Rojas, P. G. (2017) Pedestrian Level of Service: the Impact of Social Groups on Pedestrian Flow Characteristics Pedestrian Level of Service: the Impact of Social Groups on Pedestrian Flow Characteristics (in English)
2. Smothers, A., Thomas, J., Fang, W., Young, S., Morrissey, E. A., Beaver, M., & Melnick, H. (2021). Limiting barriers to exercise through the development of a faith-based community walking program. Journal of Interprofessional Education & Practice, 100428 (in English)
3. Zuniga-Garcia, N., Ross, H. W., & Machemehl, R. B. (2018). Multimodal Level of Service Methodologies: Evaluation of the Multimodal Performance of Arterial Corridors. Transportation Research Record, 2672(15), 142–154 (in English)
4. Garau, C., & Pavan, V. M. (2018). Evaluating urban quality: Indicators and assessment tools for smart sustainable cities. Sustainability, 10(3), 575 (in English)
5. Ji, H., Peng, Y., & Ding, W. (2019). A Quantitative Study of Geometric Characteristics of Urban Space Based on the Correlation with Microclimate. Sustainability, 11(18), 4951 (in English)
6. Reul, J., Grube, T., & Stolten, D. (2021). Urban transportation at an inflection point: An analysis of potential influencing factors. Transportation Research Part D: Transport and Environment, 92, 102733 (in English)
7. Kadali, B. R., & Vedagiri, P. (2016). Review of pedestrian level of service: Perspective in developing countries. Transportation Research Record, 2581(1), 37–47 (in English)
8. Landis, B. W., Vattikuti, V. R., Ottenberg, R. M., McLeod, D. S., & Guttenplan, M. (2001). Modeling the roadside walking environment: pedestrian level of service. Transportation research record, 1773(1), 82-88 (in English)
9. Gallin, N. (2001). Quantifying pedestrian friendliness--guidelines for assessing pedestrian level of service. Road & Transport Research, 10(1), 47 (in English)
10. Guensler, R., Grossman, A., Frackelton, A., Elango, V., Xu, Y., Toth, C., ... & Sadana, R. (2015). Automated sidewalk quality and safety assessment system (No. FHWA-GA-15-1216). Georgia. Department of Transportation. Office of Research (in English)
11. Al-Khateeb, G. G. (2020). Highway Planning, Survey, and Design. CRC Press (in English)
12. Banerjee, A., Maurya, A. K., & Lämmel, G. (2018). A review of pedestrian flow characteristics and level of service over different pedestrian facilities. Collective Dynamics, 3, 1–52 (in English)
13. Naga Raju, S. (2015). Improving the efficiency of energy recovery systems of wheeled vehicles with electric drive. Mester’s thesis. Rourkela: National Institute of Technology (in English).
14. Raad, N., & Burke, M. (2017, November). Pedestrian Levels-of-Service tools: problems of conception, factor identification, measurement and usefulness. In 39th Australasian Transport Research Forum (ATRF 2017), Auckland , 27–29 (in English)
15. Peterson, S. J. (2020). The Transportation Research Board, 1920 –2020: Everyone Interested Is Invited. Washington, DC: The National Academies Press (in English)
16. Maity, G., & Roy, S. K. (2018). Multiobjective transportation problem using fuzzy decision variable through multi-choice programming. Intelligent Transportation and Planning: Breakthroughs in Research and Practice, IGI Global, 866–882 (in English)
17. Cepolina, E. M., Menichini, F., & Rojas, P. G. (2018). Level of service of pedestrian facilities: Modelling human comfort perception in the evaluation of pedestrian behaviour patterns. Transportation research part F: traffic psychology and behaviour, 58, 365–381 (in English)
18. Nag, D., Goswami, A. K., Gupta, A., & Sen, J. (2020). Assessing urban sidewalk networks based on three constructs: a synthesis of pedestrian level of service literature. Transport reviews, 40(2), 204–240 (in English)
19. Hyndman R. and Athanasopoulos G. Forecasting: principles and practice. Retrieved from https:/OTexts.com/fpp2/ (in English)
Content type: Article
Appears in Collections:Transport Technologies. – 2021. – Vol. 2, No. 1

Files in This Item:
File Description SizeFormat 
2021v2n1_Prykhodko_V-Analysis_of_calculating_50-59.pdf303.43 kBAdobe PDFView/Open
2021v2n1_Prykhodko_V-Analysis_of_calculating_50-59__COVER.png395.64 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.