Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/55948
Title: Measuring logarithmic signal converter for magnetic tracking systems
Authors: Holyaka, Roman
Marusenkova, Tetyana
Fedasyuk, Dmytro
Affiliation: Lviv Polytechnic National University
Bibliographic description (Ukraine): Holyaka R. Measuring logarithmic signal converter for magnetic tracking systems / Roman Holyaka, Tetyana Marusenkova, Dmytro Fedasyuk // Measuring equipment and metrology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 81. — No 1. — P. 16–21.
Bibliographic description (International): Holyaka R. Measuring logarithmic signal converter for magnetic tracking systems / Roman Holyaka, Tetyana Marusenkova, Dmytro Fedasyuk // Measuring equipment and metrology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 81. — No 1. — P. 16–21.
Is part of: Measuring equipment and metrology, 1 (81), 2020
Issue: 1
Issue Date: 24-Feb-2020
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
DOI: doi.org/10.23939/istcmtm2020.01.016
Keywords: Spatial Navigation
Magnetic Tracking
Virtual Reality Devices
Analog Front End
Signal Compression
Logarithmic Converter
Number of pages: 6
Page range: 16-21
Start page: 16
End page: 21
Abstract: The work deals with the problem of signal conversion in magnetic tracking systems. Magnetic tracking systems are a novel development trend of navigation sensors within the concepts of the Internet of Things and virtual and augmented reality. In contrast to optical tracking systems, magnetic ones do not suffer from occlusions. In comparison with tracking systems built upon inertial sensors, they are not susceptible to bias drift and provide better accuracy. Magnetic tracking technology is based on calculating the position of objects upon the dynamic measurement of the reference magnetic field vectors. The reference magnetic fields are formed by arrays of actuator coils in the low-frequency electromagnetic radiation spectrum. Those who implement a magnetic tracking system have to ensure noise-immune measurements of signals coming from sensor coils in a wide dynamic measurement range. The range changes from microvolts for distances of several meters in couples “actuator-sensor” to hundreds of millivolts in the case if the distances in “actuator-sensor” couples reduce to several centimeters. Thus, one requires signal converters able to provide highly noise-immune measurements in a dynamic measurement range covering six orders of magnitude. The work presents the results of development, simulation, and investigation into a signal converter for magnetic tracking systems, whose novelty consists in combining the methods of logarithmic amplification and synchronous demodulation of the output signals of the sensor coils. The main nodes of the developed signal converter are a control unit, a logarithmic amplifier, a synchronous demodulator, a low-pass filter, an actuator driver and an analog-to-digital converter. Voltage logarithm compression has been performed upon volt-ampere characteristics of semiconductor p-n junctions. The synchronous demodulator provides a high level of selection of the useful signal out of electromagnetic noise. The results presented in this paper are part of our complex research work related to the development of the Magnetic Tracking System Integrated Development Environment (MTS-IDE). The latter is being developed by a team of scholars within different projects and is aimed at enhancing the efficacy of parametric optimization and synthesizing firmware of embedded systems implementing integrated magnetic tracking sensors. Simulation and experiments have shown that the dynamic range of noise-immune signal measurement using the developed converter covers six orders of magnitude, from 1E-6 V to 1 V. Investigation into functionality were conducted by oscillograph methods. The characteristics of the proposed solution were measured by the above-mentioned MTS-IDE. The obtained results are of key importance for further improvement of magnetic tracking systems, particularly, for their noise-immune measurement volume expansion.
URI: https://ena.lpnu.ua/handle/ntb/55948
Copyright owner: © Національний університет “Львівська політехніка”, 2020
URL for reference material: https://www.electronicspecifier.com/sensors/vr-3d-electromagnetic-motiontracking-sensor#downloads
References (Ukraine): [1] W. Hongtao, Y. Zhimin, W. Ping, B. Santoso, O. Lian, “A novel method of motion tracking for virtual reality using magnetic sensors”, in Asia-Pacific Magnetic Recording Conference (APMRC-2018), Shanghai, 2018. DOI: 10.1109/APMRC.2018.8601108.
[2] M. Singh and B. Jung, “High-definition wireless personal area tracking using AC magnetic field for virtual reality”,
[3] D. Fedasyuk, R. Holyaka, and T. Marusenkova, “A tester of the MEMS accelerometers operation modes”, in 2019 3rd Int. Conf. on Advanced Information and Communications Technologies (AICT), Lviv, 2019. DOI: 10.1109/aiact.2019.8847840.
[4] D. Fedasyuk, R. Holyaka, and T. Marusenkova, “Method of analyzing dynamic characteristics of MEMS gyroscopes in test measurement mode”, in 2019 9th Int. Conf. on Advanced Computer Information Technologies (ACIT), Ceske Budejovice, 2019, pp. 157–160. DOI: 10.1109/acitt.2019.8780058.
[5] D. Jo and G. Kim, “ARIoT: scalable augmented reality framework for interacting with Internet of Things appliances everywhere”, IEEE Trans. Consum. Electron., vol. 62, no. 3, pp. 334–340, Aug. 2016. DOI: 10.1109/tce.2016.7613201.
[6] T. Reichl, J. Gardiazabal, and N. Navab, “Electromagnetic Servoing—a new tracking paradigm”, IEEE Trans. Med. Imag., vol. 32, no. 8, pp. 1526–1535, Aug. 2013. DOI: 10.1109/tmi.2013.2259636.
[7] A. Franz et al., “Electromagnetic tracking in medicine—a review of technology, validation, and applications”, IEEE Trans. Med. Imag., vol. 33, no. 8, pp. 1702–1725, May 2014. DOI: 10.1109/tmi.2014.2321777.
[8] N. Alves et al., “An MEG-compatible electromagnetic-tracking system for monitoring orofacial kinematics”, IEEE Trans. Biomed. Eng., vol. 63, no. 8, pp. 1709–1717, Nov. 2015. DOI: 10.1109/tbme.2015.2500102.
[9] S. Song, Z. Li, H. Yu, and H. Ren, “Electromagnetic positioning for tip tracking and shape sensing of flexible robots”, IEEE Sensors J., vol. 15, no. 8, pp. 4565–4575, Aug. 2015. DOI: 10.1109/jsen.2015.2424228.
[10] Pérez et al., VR EM Motion tracking systems & applications. Málaga, Spain: PREMO S.L., 2017.
[11] A. Matthews, “VR 3D electromagnetic motion tracking sensor”, 2017. [Online]. Available: https://www.electronicspecifier.com/sensors/vr-3d-electromagnetic-motiontracking-sensor#downloads
[12] I. Skog, “Inertial and magnetic-field sensor arrays – capabilities and challenges”, in 2018 IEEE SENSORS, New Delhi, India, Oct. 2018. DOI: 10.1109/icsens.2018.8589760.
[13] H. Dai, S. Song, C. Hu, B. Sun, and Z. Lin, “Novel 6-D tracking method by fusion of 5-D magnetic tracking and 3-D inertial sensing”, IEEE Sensors J., vol. 18, no. 23, pp. 9640–9648, Dec. 2018. DOI: 10.1109/JSEN.2018.2872650.
[14] W. Kim, J. Song, and F. Park, “Closed-form position and orientation estimation for a three-axis electromagnetic tracking system”, IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 4331–4337, May 2018. DOI: 10.1109/tie.2017.2760244.
[15] H. He, P. Maheshwari, and D. Pommerenke, “The development of an EM-field probing system for manual near-field scanning”, IEEE Trans. Electromagn. Compat., vol. 58, no. 2, pp. 356–363, Apr. 2016. DOI: 10.1109/temc.2015.2496376.
[16] H. Sadjadi, K. Hashtrudi-Zaad, and G. Fichtinger, “Simultaneous electromagnetic tracking and calibration for dynamic field distortion compensation”, IEEE Trans. Biomed. Eng., vol. 63, no. 8, pp. 1771–1781, Aug. 2016. DOI: 10.1109/tbme.2015.2502138.
[17] I. Sharp, K. Yu, and T. Sathyan, “Positional accuracy measurement and error modeling for mobile tracking”, IEEE Trans. Mobile Comput., vol. 11, no. 6, pp. 1021–1032, June 2012. DOI: 10.1109/tmc.2011.119.
[18] P. Ripka and A. Zikmund, “Magnetic tracker with high precision”, Procedia Engineering, vol. 25, pp. 1617–1620, Dec. 2011. DOI: 10.1016/j.proeng.2011.12.400.
References (International): [1] W. Hongtao, Y. Zhimin, W. Ping, B. Santoso, O. Lian, "A novel method of motion tracking for virtual reality using magnetic sensors", in Asia-Pacific Magnetic Recording Conference (APMRC-2018), Shanghai, 2018. DOI: 10.1109/APMRC.2018.8601108.
[2] M. Singh and B. Jung, "High-definition wireless personal area tracking using AC magnetic field for virtual reality",
[3] D. Fedasyuk, R. Holyaka, and T. Marusenkova, "A tester of the MEMS accelerometers operation modes", in 2019 3rd Int. Conf. on Advanced Information and Communications Technologies (AICT), Lviv, 2019. DOI: 10.1109/aiact.2019.8847840.
[4] D. Fedasyuk, R. Holyaka, and T. Marusenkova, "Method of analyzing dynamic characteristics of MEMS gyroscopes in test measurement mode", in 2019 9th Int. Conf. on Advanced Computer Information Technologies (ACIT), Ceske Budejovice, 2019, pp. 157–160. DOI: 10.1109/acitt.2019.8780058.
[5] D. Jo and G. Kim, "ARIoT: scalable augmented reality framework for interacting with Internet of Things appliances everywhere", IEEE Trans. Consum. Electron., vol. 62, no. 3, pp. 334–340, Aug. 2016. DOI: 10.1109/tce.2016.7613201.
[6] T. Reichl, J. Gardiazabal, and N. Navab, "Electromagnetic Servoing-a new tracking paradigm", IEEE Trans. Med. Imag., vol. 32, no. 8, pp. 1526–1535, Aug. 2013. DOI: 10.1109/tmi.2013.2259636.
[7] A. Franz et al., "Electromagnetic tracking in medicine-a review of technology, validation, and applications", IEEE Trans. Med. Imag., vol. 33, no. 8, pp. 1702–1725, May 2014. DOI: 10.1109/tmi.2014.2321777.
[8] N. Alves et al., "An MEG-compatible electromagnetic-tracking system for monitoring orofacial kinematics", IEEE Trans. Biomed. Eng., vol. 63, no. 8, pp. 1709–1717, Nov. 2015. DOI: 10.1109/tbme.2015.2500102.
[9] S. Song, Z. Li, H. Yu, and H. Ren, "Electromagnetic positioning for tip tracking and shape sensing of flexible robots", IEEE Sensors J., vol. 15, no. 8, pp. 4565–4575, Aug. 2015. DOI: 10.1109/jsen.2015.2424228.
[10] Pérez et al., VR EM Motion tracking systems & applications. Málaga, Spain: PREMO S.L., 2017.
[11] A. Matthews, "VR 3D electromagnetic motion tracking sensor", 2017. [Online]. Available: https://www.electronicspecifier.com/sensors/vr-3d-electromagnetic-motiontracking-sensor#downloads
[12] I. Skog, "Inertial and magnetic-field sensor arrays – capabilities and challenges", in 2018 IEEE SENSORS, New Delhi, India, Oct. 2018. DOI: 10.1109/icsens.2018.8589760.
[13] H. Dai, S. Song, C. Hu, B. Sun, and Z. Lin, "Novel 6-D tracking method by fusion of 5-D magnetic tracking and 3-D inertial sensing", IEEE Sensors J., vol. 18, no. 23, pp. 9640–9648, Dec. 2018. DOI: 10.1109/JSEN.2018.2872650.
[14] W. Kim, J. Song, and F. Park, "Closed-form position and orientation estimation for a three-axis electromagnetic tracking system", IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 4331–4337, May 2018. DOI: 10.1109/tie.2017.2760244.
[15] H. He, P. Maheshwari, and D. Pommerenke, "The development of an EM-field probing system for manual near-field scanning", IEEE Trans. Electromagn. Compat., vol. 58, no. 2, pp. 356–363, Apr. 2016. DOI: 10.1109/temc.2015.2496376.
[16] H. Sadjadi, K. Hashtrudi-Zaad, and G. Fichtinger, "Simultaneous electromagnetic tracking and calibration for dynamic field distortion compensation", IEEE Trans. Biomed. Eng., vol. 63, no. 8, pp. 1771–1781, Aug. 2016. DOI: 10.1109/tbme.2015.2502138.
[17] I. Sharp, K. Yu, and T. Sathyan, "Positional accuracy measurement and error modeling for mobile tracking", IEEE Trans. Mobile Comput., vol. 11, no. 6, pp. 1021–1032, June 2012. DOI: 10.1109/tmc.2011.119.
[18] P. Ripka and A. Zikmund, "Magnetic tracker with high precision", Procedia Engineering, vol. 25, pp. 1617–1620, Dec. 2011. DOI: 10.1016/j.proeng.2011.12.400.
Content type: Article
Appears in Collections:Вимірювальна техніка та метрологія. – 2020. – Випуск 81, №1

Files in This Item:
File Description SizeFormat 
2020v81n1_Holyaka_R-Measuring_logarithmic_signal_16-21.pdf386.74 kBAdobe PDFView/Open
2020v81n1_Holyaka_R-Measuring_logarithmic_signal_16-21__COVER.png1.52 MBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.