DC Field | Value | Language |
dc.contributor.author | Holyaka, Roman | |
dc.contributor.author | Marusenkova, Tetyana | |
dc.contributor.author | Fedasyuk, Dmytro | |
dc.date.accessioned | 2021-01-21T08:32:25Z | - |
dc.date.available | 2021-01-21T08:32:25Z | - |
dc.date.created | 2020-02-24 | |
dc.date.issued | 2020-02-24 | |
dc.identifier.citation | Holyaka R. Measuring logarithmic signal converter for magnetic tracking systems / Roman Holyaka, Tetyana Marusenkova, Dmytro Fedasyuk // Measuring equipment and metrology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 81. — No 1. — P. 16–21. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/55948 | - |
dc.description.abstract | The work deals with the problem of signal conversion in magnetic tracking systems. Magnetic tracking systems
are a novel development trend of navigation sensors within the concepts of the Internet of Things and virtual and augmented
reality. In contrast to optical tracking systems, magnetic ones do not suffer from occlusions. In comparison with tracking systems
built upon inertial sensors, they are not susceptible to bias drift and provide better accuracy. Magnetic tracking technology is based
on calculating the position of objects upon the dynamic measurement of the reference magnetic field vectors. The reference
magnetic fields are formed by arrays of actuator coils in the low-frequency electromagnetic radiation spectrum. Those who
implement a magnetic tracking system have to ensure noise-immune measurements of signals coming from sensor coils in a wide
dynamic measurement range. The range changes from microvolts for distances of several meters in couples “actuator-sensor” to
hundreds of millivolts in the case if the distances in “actuator-sensor” couples reduce to several centimeters. Thus, one requires
signal converters able to provide highly noise-immune measurements in a dynamic measurement range covering six orders of
magnitude. The work presents the results of development, simulation, and investigation into a signal converter for magnetic
tracking systems, whose novelty consists in combining the methods of logarithmic amplification and synchronous demodulation of
the output signals of the sensor coils. The main nodes of the developed signal converter are a control unit, a logarithmic amplifier,
a synchronous demodulator, a low-pass filter, an actuator driver and an analog-to-digital converter. Voltage logarithm compression
has been performed upon volt-ampere characteristics of semiconductor p-n junctions. The synchronous demodulator provides a
high level of selection of the useful signal out of electromagnetic noise. The results presented in this paper are part of our complex
research work related to the development of the Magnetic Tracking System Integrated Development Environment (MTS-IDE). The
latter is being developed by a team of scholars within different projects and is aimed at enhancing the efficacy of parametric
optimization and synthesizing firmware of embedded systems implementing integrated magnetic tracking sensors. Simulation and
experiments have shown that the dynamic range of noise-immune signal measurement using the developed converter covers six
orders of magnitude, from 1E-6 V to 1 V. Investigation into functionality were conducted by oscillograph methods. The
characteristics of the proposed solution were measured by the above-mentioned MTS-IDE. The obtained results are of key
importance for further improvement of magnetic tracking systems, particularly, for their noise-immune measurement volume
expansion. | |
dc.format.extent | 16-21 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Measuring equipment and metrology, 1 (81), 2020 | |
dc.relation.uri | https://www.electronicspecifier.com/sensors/vr-3d-electromagnetic-motiontracking-sensor#downloads | |
dc.subject | Spatial Navigation | |
dc.subject | Magnetic Tracking | |
dc.subject | Virtual Reality Devices | |
dc.subject | Analog Front End | |
dc.subject | Signal Compression | |
dc.subject | Logarithmic Converter | |
dc.title | Measuring logarithmic signal converter for magnetic tracking systems | |
dc.type | Article | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.format.pages | 6 | |
dc.identifier.citationen | Holyaka R. Measuring logarithmic signal converter for magnetic tracking systems / Roman Holyaka, Tetyana Marusenkova, Dmytro Fedasyuk // Measuring equipment and metrology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 81. — No 1. — P. 16–21. | |
dc.identifier.doi | doi.org/10.23939/istcmtm2020.01.016 | |
dc.relation.references | [1] W. Hongtao, Y. Zhimin, W. Ping, B. Santoso, O. Lian, “A novel method of motion tracking for virtual reality using magnetic sensors”, in Asia-Pacific Magnetic Recording Conference (APMRC-2018), Shanghai, 2018. DOI: 10.1109/APMRC.2018.8601108. | |
dc.relation.references | [2] M. Singh and B. Jung, “High-definition wireless personal area tracking using AC magnetic field for virtual reality”, | |
dc.relation.references | [3] D. Fedasyuk, R. Holyaka, and T. Marusenkova, “A tester of the MEMS accelerometers operation modes”, in 2019 3rd Int. Conf. on Advanced Information and Communications Technologies (AICT), Lviv, 2019. DOI: 10.1109/aiact.2019.8847840. | |
dc.relation.references | [4] D. Fedasyuk, R. Holyaka, and T. Marusenkova, “Method of analyzing dynamic characteristics of MEMS gyroscopes in test measurement mode”, in 2019 9th Int. Conf. on Advanced Computer Information Technologies (ACIT), Ceske Budejovice, 2019, pp. 157–160. DOI: 10.1109/acitt.2019.8780058. | |
dc.relation.references | [5] D. Jo and G. Kim, “ARIoT: scalable augmented reality framework for interacting with Internet of Things appliances everywhere”, IEEE Trans. Consum. Electron., vol. 62, no. 3, pp. 334–340, Aug. 2016. DOI: 10.1109/tce.2016.7613201. | |
dc.relation.references | [6] T. Reichl, J. Gardiazabal, and N. Navab, “Electromagnetic Servoing—a new tracking paradigm”, IEEE Trans. Med. Imag., vol. 32, no. 8, pp. 1526–1535, Aug. 2013. DOI: 10.1109/tmi.2013.2259636. | |
dc.relation.references | [7] A. Franz et al., “Electromagnetic tracking in medicine—a review of technology, validation, and applications”, IEEE Trans. Med. Imag., vol. 33, no. 8, pp. 1702–1725, May 2014. DOI: 10.1109/tmi.2014.2321777. | |
dc.relation.references | [8] N. Alves et al., “An MEG-compatible electromagnetic-tracking system for monitoring orofacial kinematics”, IEEE Trans. Biomed. Eng., vol. 63, no. 8, pp. 1709–1717, Nov. 2015. DOI: 10.1109/tbme.2015.2500102. | |
dc.relation.references | [9] S. Song, Z. Li, H. Yu, and H. Ren, “Electromagnetic positioning for tip tracking and shape sensing of flexible robots”, IEEE Sensors J., vol. 15, no. 8, pp. 4565–4575, Aug. 2015. DOI: 10.1109/jsen.2015.2424228. | |
dc.relation.references | [10] Pérez et al., VR EM Motion tracking systems & applications. Málaga, Spain: PREMO S.L., 2017. | |
dc.relation.references | [11] A. Matthews, “VR 3D electromagnetic motion tracking sensor”, 2017. [Online]. Available: https://www.electronicspecifier.com/sensors/vr-3d-electromagnetic-motiontracking-sensor#downloads | |
dc.relation.references | [12] I. Skog, “Inertial and magnetic-field sensor arrays – capabilities and challenges”, in 2018 IEEE SENSORS, New Delhi, India, Oct. 2018. DOI: 10.1109/icsens.2018.8589760. | |
dc.relation.references | [13] H. Dai, S. Song, C. Hu, B. Sun, and Z. Lin, “Novel 6-D tracking method by fusion of 5-D magnetic tracking and 3-D inertial sensing”, IEEE Sensors J., vol. 18, no. 23, pp. 9640–9648, Dec. 2018. DOI: 10.1109/JSEN.2018.2872650. | |
dc.relation.references | [14] W. Kim, J. Song, and F. Park, “Closed-form position and orientation estimation for a three-axis electromagnetic tracking system”, IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 4331–4337, May 2018. DOI: 10.1109/tie.2017.2760244. | |
dc.relation.references | [15] H. He, P. Maheshwari, and D. Pommerenke, “The development of an EM-field probing system for manual near-field scanning”, IEEE Trans. Electromagn. Compat., vol. 58, no. 2, pp. 356–363, Apr. 2016. DOI: 10.1109/temc.2015.2496376. | |
dc.relation.references | [16] H. Sadjadi, K. Hashtrudi-Zaad, and G. Fichtinger, “Simultaneous electromagnetic tracking and calibration for dynamic field distortion compensation”, IEEE Trans. Biomed. Eng., vol. 63, no. 8, pp. 1771–1781, Aug. 2016. DOI: 10.1109/tbme.2015.2502138. | |
dc.relation.references | [17] I. Sharp, K. Yu, and T. Sathyan, “Positional accuracy measurement and error modeling for mobile tracking”, IEEE Trans. Mobile Comput., vol. 11, no. 6, pp. 1021–1032, June 2012. DOI: 10.1109/tmc.2011.119. | |
dc.relation.references | [18] P. Ripka and A. Zikmund, “Magnetic tracker with high precision”, Procedia Engineering, vol. 25, pp. 1617–1620, Dec. 2011. DOI: 10.1016/j.proeng.2011.12.400. | |
dc.relation.referencesen | [1] W. Hongtao, Y. Zhimin, W. Ping, B. Santoso, O. Lian, "A novel method of motion tracking for virtual reality using magnetic sensors", in Asia-Pacific Magnetic Recording Conference (APMRC-2018), Shanghai, 2018. DOI: 10.1109/APMRC.2018.8601108. | |
dc.relation.referencesen | [2] M. Singh and B. Jung, "High-definition wireless personal area tracking using AC magnetic field for virtual reality", | |
dc.relation.referencesen | [3] D. Fedasyuk, R. Holyaka, and T. Marusenkova, "A tester of the MEMS accelerometers operation modes", in 2019 3rd Int. Conf. on Advanced Information and Communications Technologies (AICT), Lviv, 2019. DOI: 10.1109/aiact.2019.8847840. | |
dc.relation.referencesen | [4] D. Fedasyuk, R. Holyaka, and T. Marusenkova, "Method of analyzing dynamic characteristics of MEMS gyroscopes in test measurement mode", in 2019 9th Int. Conf. on Advanced Computer Information Technologies (ACIT), Ceske Budejovice, 2019, pp. 157–160. DOI: 10.1109/acitt.2019.8780058. | |
dc.relation.referencesen | [5] D. Jo and G. Kim, "ARIoT: scalable augmented reality framework for interacting with Internet of Things appliances everywhere", IEEE Trans. Consum. Electron., vol. 62, no. 3, pp. 334–340, Aug. 2016. DOI: 10.1109/tce.2016.7613201. | |
dc.relation.referencesen | [6] T. Reichl, J. Gardiazabal, and N. Navab, "Electromagnetic Servoing-a new tracking paradigm", IEEE Trans. Med. Imag., vol. 32, no. 8, pp. 1526–1535, Aug. 2013. DOI: 10.1109/tmi.2013.2259636. | |
dc.relation.referencesen | [7] A. Franz et al., "Electromagnetic tracking in medicine-a review of technology, validation, and applications", IEEE Trans. Med. Imag., vol. 33, no. 8, pp. 1702–1725, May 2014. DOI: 10.1109/tmi.2014.2321777. | |
dc.relation.referencesen | [8] N. Alves et al., "An MEG-compatible electromagnetic-tracking system for monitoring orofacial kinematics", IEEE Trans. Biomed. Eng., vol. 63, no. 8, pp. 1709–1717, Nov. 2015. DOI: 10.1109/tbme.2015.2500102. | |
dc.relation.referencesen | [9] S. Song, Z. Li, H. Yu, and H. Ren, "Electromagnetic positioning for tip tracking and shape sensing of flexible robots", IEEE Sensors J., vol. 15, no. 8, pp. 4565–4575, Aug. 2015. DOI: 10.1109/jsen.2015.2424228. | |
dc.relation.referencesen | [10] Pérez et al., VR EM Motion tracking systems & applications. Málaga, Spain: PREMO S.L., 2017. | |
dc.relation.referencesen | [11] A. Matthews, "VR 3D electromagnetic motion tracking sensor", 2017. [Online]. Available: https://www.electronicspecifier.com/sensors/vr-3d-electromagnetic-motiontracking-sensor#downloads | |
dc.relation.referencesen | [12] I. Skog, "Inertial and magnetic-field sensor arrays – capabilities and challenges", in 2018 IEEE SENSORS, New Delhi, India, Oct. 2018. DOI: 10.1109/icsens.2018.8589760. | |
dc.relation.referencesen | [13] H. Dai, S. Song, C. Hu, B. Sun, and Z. Lin, "Novel 6-D tracking method by fusion of 5-D magnetic tracking and 3-D inertial sensing", IEEE Sensors J., vol. 18, no. 23, pp. 9640–9648, Dec. 2018. DOI: 10.1109/JSEN.2018.2872650. | |
dc.relation.referencesen | [14] W. Kim, J. Song, and F. Park, "Closed-form position and orientation estimation for a three-axis electromagnetic tracking system", IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 4331–4337, May 2018. DOI: 10.1109/tie.2017.2760244. | |
dc.relation.referencesen | [15] H. He, P. Maheshwari, and D. Pommerenke, "The development of an EM-field probing system for manual near-field scanning", IEEE Trans. Electromagn. Compat., vol. 58, no. 2, pp. 356–363, Apr. 2016. DOI: 10.1109/temc.2015.2496376. | |
dc.relation.referencesen | [16] H. Sadjadi, K. Hashtrudi-Zaad, and G. Fichtinger, "Simultaneous electromagnetic tracking and calibration for dynamic field distortion compensation", IEEE Trans. Biomed. Eng., vol. 63, no. 8, pp. 1771–1781, Aug. 2016. DOI: 10.1109/tbme.2015.2502138. | |
dc.relation.referencesen | [17] I. Sharp, K. Yu, and T. Sathyan, "Positional accuracy measurement and error modeling for mobile tracking", IEEE Trans. Mobile Comput., vol. 11, no. 6, pp. 1021–1032, June 2012. DOI: 10.1109/tmc.2011.119. | |
dc.relation.referencesen | [18] P. Ripka and A. Zikmund, "Magnetic tracker with high precision", Procedia Engineering, vol. 25, pp. 1617–1620, Dec. 2011. DOI: 10.1016/j.proeng.2011.12.400. | |
dc.citation.issue | 1 | |
dc.citation.spage | 16 | |
dc.citation.epage | 21 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Вимірювальна техніка та метрологія. – 2020. – Випуск 81, №1
|