https://oldena.lpnu.ua/handle/ntb/55849
Title: | Portable system for sampling liquid atmospheric precipitation |
Other Titles: | Портативна система відбору проб рідких атмосферних опадів |
Authors: | Здобицький, А. Матвійків, О. Лобур, М. Климкович, Т. Бокла, Н. Zdobytskyi, A. Matviykiv, O. Lobur, M. Klymkovych, T. Bokla, N. |
Affiliation: | Національний університет “Львівська політехніка” Lviv Polytechnic National University |
Bibliographic description (Ukraine): | Portable system for sampling liquid atmospheric precipitation / A. Zdobytskyi, O. Matviykiv, M. Lobur, T. Klymkovych, N. Bokla // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 1. — No 1. — P. 71–78. |
Bibliographic description (International): | Portable system for sampling liquid atmospheric precipitation / A. Zdobytskyi, O. Matviykiv, M. Lobur, T. Klymkovych, N. Bokla // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 1. — No 1. — P. 71–78. |
Is part of: | Computer Design Systems. Theory and Practice, 1 (1), 2019 |
Issue: | 1 |
Issue Date: | 28-Feb-2019 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
DOI: | doi.org/10.23939/cds2019.01.071 |
Keywords: | атмосферні опади портативна система пристрій приводна шестерня забір проб забруднення керуюча плата давач atmospheric precipitation portable system device drive gear sampling pollution control board sensor |
Number of pages: | 8 |
Page range: | 71-78 |
Start page: | 71 |
End page: | 78 |
Abstract: | У роботі розглянуто можливість визначення постійних та випадкових джерел забруднення
навколишнього середовища за рівнем забрудненості рідких атмосферних опадів. Окреслено
проблематику забору проб рідких атмосферних опадів та моніторингу концентрації забруднень
за часом випадіння атмосферних опадів. Обґрунтовано доцільність розробки портативної
системи, що дозволяє здійснювати забір проб рідких атмосферних опадів у автономному режимі в
різних часових інтервалах та періодах випадіння дощу, незалежно від місця його встановлення.
Описано конструктивні особливості електричної та механічної частин пристрою, а також
алгоритм їх роботи. Наведено результати моделювання та перевірки роботоздатності портативного
пристрою за якими визначено його сумарний масовий забір води. The paper considers the possibility of determining the permanent and random sources of pollution of the environment by the level of pollution of liquid atmospheric precipitation. The problems of liquid atmospheric precipitation testing and monitoring of pollution concentration during precipitation are outlined. The expediency of developing of a portable system that allows collecting samples of liquid atmospheric precipitation in autonomous modes at different time intervals and periods of rainfall, regardless of the place of its installation, is substantiated. The design features of the electric and mechanical parts of the device, as well as the algorithm of their work, are described. The results of modeling and checking of the working capacity of the portable device, which determine the total mass flow of water, are described. |
URI: | https://ena.lpnu.ua/handle/ntb/55849 |
Copyright owner: | © Національний університет „Львівська політехніка“, 2019 © Zdobytskyi A., Matviykiv O., Lobur M., Klymkovych T., Bokla N., 2019 |
URL for reference material: | http://www.columbiaweather.com/Pegasus https://confluence.cornell.edu/display/SIMULATION/FLUENT+Turbu-lent+Pipe+Flow |
References (Ukraine): | 1. ANSYS FLUENT Tutorial Guide. ANSYS Inc.: Southpointe, 2011. 1146 p. 2. Banach D. T., Jones T., Kalameja A. J. Autodesk Inventor 2010 Essentials plus Clifton Park, NewYork: Delmar Cengage Learning Autodesk Press, 2010 3. Columbia-Weather. “Pegasus EX PortableWeather Station – Columbia WeatherSystems, Inc.” http://www.columbiaweather.com/Pegasus EX-Brochure.pdf June 3, 2010. 4. Depa K., Melnyk O., Melnyk M., Bokla N., Lobur M. The autonomous power supply for systems of acoustic climate control and traffic flows. 2018 XIV-th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH) Polyana, UKRAINE, 18–22 April, 2018 p. 268–271. 5. Garg S., Chaudhary A., Pradhan A., Sharma H. “The role of zigbee technology in weather monitoring system”, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering Vol. 2, Issue 5, May 2013 6. Flues M., Hama P., Lemes M. J. L., Dantas E. S. K. and Fornaro A., An automatic refrigerated sequential precipitation sampler, Atmospheric Environment, 36, 2002. 7. Haefke M., Mukhopadhyay S. C. and Ewald H., “A Zigbee Based Smart Sensing Platform for Monitoring Environmental Parameters”, 2011 IEEE. 8. Klimchuk S., Naumenko A., A. Tikhonov, A. Martynenko Automated design of agricultural machinery in the environment: Tutorial. Kharkov: KNTUA, 2005. 9. Matviykiv O., Klymkovych T., Bokla N. Modeling and analysis of integrated precise joule micro-heater for lab-chip diagnostic devices. 2018 XIV-th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH) Polyana, UKRAINE, 18–22 April, 2018 p. 155–160. 10. Tremblay T. Introducing Autodesk Inventor 2009 and Autodesk Inventor LTTM 2009. Indianapolis, Indiana: Wiley Publishing Inc., 2008. Weerasinghe, R. M., Aroos, M. S. M., Pannila, A. S., Jayananda, M. K. and Sonnadara, D. U. J., Construction of an automated weather station for ground-level weather measurements, Proceedings of Institute of Engineers Sri Lanka, 105, (2011) 450. 11. Zhen Fang, Zhan Zhao, Xunxue Cui, LiDong Du, Daoqu Geng, Yundong Xuan, Jing Xu, ShaoHua Wu, “Micro-Sensor Network Node Design for Meteorological Parameter Monitoring”, IEEExplore 263 ICRTEDC -2014. 12. https://confluence.cornell.edu/display/SIMULATION/FLUENT+Turbu-lent+Pipe+Flow. |
References (International): | 1. ANSYS FLUENT Tutorial Guide. ANSYS Inc., Southpointe, 2011. 1146 p. 2. Banach D. T., Jones T., Kalameja A. J. Autodesk Inventor 2010 Essentials plus Clifton Park, NewYork: Delmar Cengage Learning Autodesk Press, 2010 3. Columbia-Weather. "Pegasus EX PortableWeather Station – Columbia WeatherSystems, Inc." http://www.columbiaweather.com/Pegasus EX-Brochure.pdf June 3, 2010. 4. Depa K., Melnyk O., Melnyk M., Bokla N., Lobur M. The autonomous power supply for systems of acoustic climate control and traffic flows. 2018 XIV-th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH) Polyana, UKRAINE, 18–22 April, 2018 p. 268–271. 5. Garg S., Chaudhary A., Pradhan A., Sharma H. "The role of zigbee technology in weather monitoring system", International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering Vol. 2, Issue 5, May 2013 6. Flues M., Hama P., Lemes M. J. L., Dantas E. S. K. and Fornaro A., An automatic refrigerated sequential precipitation sampler, Atmospheric Environment, 36, 2002. 7. Haefke M., Mukhopadhyay S. C. and Ewald H., "A Zigbee Based Smart Sensing Platform for Monitoring Environmental Parameters", 2011 IEEE. 8. Klimchuk S., Naumenko A., A. Tikhonov, A. Martynenko Automated design of agricultural machinery in the environment: Tutorial. Kharkov: KNTUA, 2005. 9. Matviykiv O., Klymkovych T., Bokla N. Modeling and analysis of integrated precise joule micro-heater for lab-chip diagnostic devices. 2018 XIV-th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH) Polyana, UKRAINE, 18–22 April, 2018 p. 155–160. 10. Tremblay T. Introducing Autodesk Inventor 2009 and Autodesk Inventor LTTM 2009. Indianapolis, Indiana: Wiley Publishing Inc., 2008. Weerasinghe, R. M., Aroos, M. S. M., Pannila, A. S., Jayananda, M. K. and Sonnadara, D. U. J., Construction of an automated weather station for ground-level weather measurements, Proceedings of Institute of Engineers Sri Lanka, 105, (2011) 450. 11. Zhen Fang, Zhan Zhao, Xunxue Cui, LiDong Du, Daoqu Geng, Yundong Xuan, Jing Xu, ShaoHua Wu, "Micro-Sensor Network Node Design for Meteorological Parameter Monitoring", IEEExplore 263 ICRTEDC -2014. 12. https://confluence.cornell.edu/display/SIMULATION/FLUENT+Turbu-lent+Pipe+Flow. |
Content type: | Article |
Appears in Collections: | Комп'ютерні системи проектування теорія і практика. – 2019. – Том 1, № 1 |
File | Description | Size | Format | |
---|---|---|---|---|
2019v1n1_Zdobytskyi_A-Portable_system_for_sampling_71-78.pdf | 553.31 kB | Adobe PDF | View/Open | |
2019v1n1_Zdobytskyi_A-Portable_system_for_sampling_71-78__COVER.png | 399.31 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.