https://oldena.lpnu.ua/handle/ntb/55786
Title: | n-Hexane Isomerization Over Nickel-Containing Mordenite Zeolite |
Other Titles: | Ізомеризація н-гексану на нікельвмісному цеоліті типу морденіту |
Authors: | Patrylak, Lyubov Krylova, Mariya Pertko, Oleksandra Voloshyna, Yuliya Yakovenko, Angela |
Affiliation: | V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine |
Bibliographic description (Ukraine): | n-Hexane Isomerization Over Nickel-Containing Mordenite Zeolite / Lyubov Patrylak, Mariya Krylova, Oleksandra Pertko, Yuliya Voloshyna, Angela Yakovenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 234–238. |
Bibliographic description (International): | n-Hexane Isomerization Over Nickel-Containing Mordenite Zeolite / Lyubov Patrylak, Mariya Krylova, Oleksandra Pertko, Yuliya Voloshyna, Angela Yakovenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 234–238. |
Is part of: | Chemistry & Chemical Technology, 2 (14), 2020 |
Issue: | 2 |
Volume: | 14 |
Issue Date: | 24-Jan-2020 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
DOI: | doi.org/10.23939/chcht14.02.234 |
Keywords: | ізомеризація н-гексану цеоліт типу морденіту нікель паладій активність селективність n-hexane isomerization mordenite zeolite activity nickel palladium activity selectivity |
Number of pages: | 5 |
Page range: | 234-238 |
Start page: | 234 |
End page: | 238 |
Abstract: | Синтезовано зразки нікельвмісного морденіту внаслідок просочування із водних розчинів нітрату нікелю.
З використанням методу низькотемпературної адсорбції/
десорбції азоту та мікроімпульсної ізомеризації н-гексану
вивчено пористі та каталітичні властивості. За температур
523–573 К максимальні виходи ізомерів становлять 10-12 % мас. для вмісту Ni 1–5 % мас. Nickel-containing mordenite samples were synthesized by impregnation from aqua's solution of nickel nitrate. Porous and catalytic characteristics of the catalysts were studied by means of low temperature nitrogen adsorption/desorption and micropulse n-hexane isomerisation. The maximum isomer yields are 10-12 wt % for 1-5 wt % Ni content at 523–573 K. |
URI: | https://ena.lpnu.ua/handle/ntb/55786 |
Copyright owner: | © Національний університет “Львівська політехніка”, 2020 © Patrylak L, Krylova M., Pertko O., Voloshyna Yu., Yakovenko A., 2020 |
URL for reference material: | https://doi.org/10.1039/C3CS60394F https://doi.org/10.1016/j.jcat.2015.12.009 https://doi.org/10.1016/j.petlm.2017.02.001 https://doi.org/10.1007/s10562-013-0973-y https://doi.org/10.1080/23312009.2018.1514686 https://doi.org/10.1515/ijcre-2015-0052 https://doi.org/10.1166/apm.2017.1127 https://doi.org/10.1166/jnn.2015.8328 https://doi.org/10.1177/026361749901700205 https://doi.org/10.1007/s11237-005-0035-7 https://doi.org/10.1016/j.cattod.2005.07.056 https://doi.org/10.1016/j.apcata.2006.09.039 https://doi.org/10.1016/j.cattod.2011.02.031 https://doi.org/10.4236/mrc.2013.24017 https://doi.org/10.1007/s10934-018-0685-1 https://doi.org/10.1260/0263617001493512 https://doi.org/10.1007/s11237-013-9308-8 https://doi.org/10.1007/s11237-011-9205-y https://doi.org/10.1023/A:1025729530977 https://doi.org/10.1260/0263617011494376 http://www.ajbasweb.com/old/ajbas/2017/January/27-34.pdf |
References (Ukraine): | [1] Primo A., Garcia H.: Chem. Soc. Rev., 2014, 43, 7548. https://doi.org/10.1039/C3CS60394F [2] Liu S., Ren J., Zhang H. et al.: J. Catal., 2016, 335, 11. https://doi.org/10.1016/j.jcat.2015.12.009 [3] Dhar A., Vekariya R., Sharma P.: Petroleum, 2017, 3, 489. https://doi.org/10.1016/j.petlm.2017.02.001 [4] Izutsu Y., Oku Y., Hidaka Y. et al.: Catal. Lett., 2013, 143, 486. https://doi.org/10.1007/s10562-013-0973-y [5] Ghouri A., Usman M.: J. Chem. Soc. Pak., 2017, 39, 919. [6] Dhar A., Vekariya R., Bhadja P.: Cogent Chem., 2018, 4, 1514686. https://doi.org/10.1080/23312009.2018.1514686 [7] Dhar A., Dutta A., Castillo-Araiza C. et al.: Int. J. Chem. Reactor Eng., 2016, 14, 795. https://doi.org/10.1515/ijcre-2015-0052 [8] Tamizhdurai P., Lavanya M., Meenakshisundaram A. et al.: Adv. Por. Mater., 2017, 5, 169. https://doi.org/10.1166/apm.2017.1127 [9] Yun S., Seong M., Park Y. et al.: J. Nanosci. Nanotechnol., 2015, 15, 647. https://doi.org/10.1166/jnn.2015.8328 [10] Patrylak L.: Adsortp. Sci. Technol., 1999, 17, 115. https://doi.org/10.1177/026361749901700205 [11] Brei V.: Theor. Experim. Chem., 2005, 41, 165. https://doi.org/10.1007/s11237-005-0035-7 [12] Yoshioka C., Garetto T., Cardoso D.: Catal. Today, 2005, 107-108, 693. https://doi.org/10.1016/j.cattod.2005.07.056 [13]Jordao M., Simoes V., Cardoso D.: Appl. Catal. A, 2007, 319, 1. https://doi.org/10.1016/j.apcata.2006.09.039 [14] Lima P., Garetto T., Cavalcante C.L.Jr. et al.: Catal. Today, 2011, 172, 195. https://doi.org/10.1016/j.cattod.2011.02.031 [15] Martins G., dos Santos E., Rodrigues M. et al.: Modern Res. Catal., 2013, 2, 119. https://doi.org/10.4236/mrc.2013.24017 [16] Patrylak L., Krylova M., Pertko O. et al.: J. Porous Mater., 2019, 26, 861. https://doi.org/10.1007/s10934-018-0685-1 [17] Patrylak L.: Adsorp. Sci. Technol., 2000, 18, 399. https://doi.org/10.1260/0263617001493512 [18] Patrylak K.,, Patrylak L.,, Repetskyi I.: Theor. Experim. Chem., 2013, 49, 143. https://doi.org/10.1007/s11237-013-9308-8 [19] Patrylak K., Patrylak L., Voloshyna Yu. et al.: Theor. Experim. Chem., 2011, 47, 205. https://doi.org/10.1007/s11237-011-9205-y [20] Patrylak L., Manza I., Vypirailenko V. et al.: Theor. Experim. Chem., 2003, 39, 263. https://doi.org/10.1023/A:1025729530977 [21] Rouquerol F., Rouquerol J., Sing K.: Adsorption by Powders and Porous Solids. Principles, Methodology and Applications. Academic Press, San Diego 1999. [22] Patrylak L., Likhnyovskyi R., Vypyraylenko V. et al.: Adsorpt. Sci. Technol., 2001, 19, 525. https://doi.org/10.1260/0263617011494376 [23] Patrylak L.: Zh. Phys. Khim., 2005, 79, 1658. [24] Smail H., Shareef K., Ramli Z.: Austral. J. Bas. Appl. Sci., 2017, 11, 27. http://www.ajbasweb.com/old/ajbas/2017/January/27-34.pdf |
References (International): | [1] Primo A., Garcia H., Chem. Soc. Rev., 2014, 43, 7548. https://doi.org/10.1039/P.3CS60394F [2] Liu S., Ren J., Zhang H. et al., J. Catal., 2016, 335, 11. https://doi.org/10.1016/j.jcat.2015.12.009 [3] Dhar A., Vekariya R., Sharma P., Petroleum, 2017, 3, 489. https://doi.org/10.1016/j.petlm.2017.02.001 [4] Izutsu Y., Oku Y., Hidaka Y. et al., Catal. Lett., 2013, 143, 486. https://doi.org/10.1007/s10562-013-0973-y [5] Ghouri A., Usman M., J. Chem. Soc. Pak., 2017, 39, 919. [6] Dhar A., Vekariya R., Bhadja P., Cogent Chem., 2018, 4, 1514686. https://doi.org/10.1080/23312009.2018.1514686 [7] Dhar A., Dutta A., Castillo-Araiza C. et al., Int. J. Chem. Reactor Eng., 2016, 14, 795. https://doi.org/10.1515/ijcre-2015-0052 [8] Tamizhdurai P., Lavanya M., Meenakshisundaram A. et al., Adv. Por. Mater., 2017, 5, 169. https://doi.org/10.1166/apm.2017.1127 [9] Yun S., Seong M., Park Y. et al., J. Nanosci. Nanotechnol., 2015, 15, 647. https://doi.org/10.1166/jnn.2015.8328 [10] Patrylak L., Adsortp. Sci. Technol., 1999, 17, 115. https://doi.org/10.1177/026361749901700205 [11] Brei V., Theor. Experim. Chem., 2005, 41, 165. https://doi.org/10.1007/s11237-005-0035-7 [12] Yoshioka C., Garetto T., Cardoso D., Catal. Today, 2005, 107-108, 693. https://doi.org/10.1016/j.cattod.2005.07.056 [13]Jordao M., Simoes V., Cardoso D., Appl. Catal. A, 2007, 319, 1. https://doi.org/10.1016/j.apcata.2006.09.039 [14] Lima P., Garetto T., Cavalcante C.L.Jr. et al., Catal. Today, 2011, 172, 195. https://doi.org/10.1016/j.cattod.2011.02.031 [15] Martins G., dos Santos E., Rodrigues M. et al., Modern Res. Catal., 2013, 2, 119. https://doi.org/10.4236/mrc.2013.24017 [16] Patrylak L., Krylova M., Pertko O. et al., J. Porous Mater., 2019, 26, 861. https://doi.org/10.1007/s10934-018-0685-1 [17] Patrylak L., Adsorp. Sci. Technol., 2000, 18, 399. https://doi.org/10.1260/0263617001493512 [18] Patrylak K.,, Patrylak L.,, Repetskyi I., Theor. Experim. Chem., 2013, 49, 143. https://doi.org/10.1007/s11237-013-9308-8 [19] Patrylak K., Patrylak L., Voloshyna Yu. et al., Theor. Experim. Chem., 2011, 47, 205. https://doi.org/10.1007/s11237-011-9205-y [20] Patrylak L., Manza I., Vypirailenko V. et al., Theor. Experim. Chem., 2003, 39, 263. https://doi.org/10.1023/A:1025729530977 [21] Rouquerol F., Rouquerol J., Sing K., Adsorption by Powders and Porous Solids. Principles, Methodology and Applications. Academic Press, San Diego 1999. [22] Patrylak L., Likhnyovskyi R., Vypyraylenko V. et al., Adsorpt. Sci. Technol., 2001, 19, 525. https://doi.org/10.1260/0263617011494376 [23] Patrylak L., Zh. Phys. Khim., 2005, 79, 1658. [24] Smail H., Shareef K., Ramli Z., Austral. J. Bas. Appl. Sci., 2017, 11, 27. http://www.ajbasweb.com/old/ajbas/2017/January/27-34.pdf |
Content type: | Article |
Appears in Collections: | Chemistry & Chemical Technology. – 2020. – Vol. 14, No. 2 |
File | Description | Size | Format | |
---|---|---|---|---|
2020v14n2_Patrylak_L-n_Hexane_Isomerization_234-238.pdf | 385.2 kB | Adobe PDF | View/Open | |
2020v14n2_Patrylak_L-n_Hexane_Isomerization_234-238__COVER.png | 534.27 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.