Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/55786
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPatrylak, Lyubov
dc.contributor.authorKrylova, Mariya
dc.contributor.authorPertko, Oleksandra
dc.contributor.authorVoloshyna, Yuliya
dc.contributor.authorYakovenko, Angela
dc.date.accessioned2020-12-30T08:53:21Z-
dc.date.available2020-12-30T08:53:21Z-
dc.date.created2020-01-24
dc.date.issued2020-01-24
dc.identifier.citationn-Hexane Isomerization Over Nickel-Containing Mordenite Zeolite / Lyubov Patrylak, Mariya Krylova, Oleksandra Pertko, Yuliya Voloshyna, Angela Yakovenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 234–238.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/55786-
dc.description.abstractСинтезовано зразки нікельвмісного морденіту внаслідок просочування із водних розчинів нітрату нікелю. З використанням методу низькотемпературної адсорбції/ десорбції азоту та мікроімпульсної ізомеризації н-гексану вивчено пористі та каталітичні властивості. За температур 523–573 К максимальні виходи ізомерів становлять 10-12 % мас. для вмісту Ni 1–5 % мас.
dc.description.abstractNickel-containing mordenite samples were synthesized by impregnation from aqua's solution of nickel nitrate. Porous and catalytic characteristics of the catalysts were studied by means of low temperature nitrogen adsorption/desorption and micropulse n-hexane isomerisation. The maximum isomer yields are 10-12 wt % for 1-5 wt % Ni content at 523–573 K.
dc.format.extent234-238
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (14), 2020
dc.relation.urihttps://doi.org/10.1039/C3CS60394F
dc.relation.urihttps://doi.org/10.1016/j.jcat.2015.12.009
dc.relation.urihttps://doi.org/10.1016/j.petlm.2017.02.001
dc.relation.urihttps://doi.org/10.1007/s10562-013-0973-y
dc.relation.urihttps://doi.org/10.1080/23312009.2018.1514686
dc.relation.urihttps://doi.org/10.1515/ijcre-2015-0052
dc.relation.urihttps://doi.org/10.1166/apm.2017.1127
dc.relation.urihttps://doi.org/10.1166/jnn.2015.8328
dc.relation.urihttps://doi.org/10.1177/026361749901700205
dc.relation.urihttps://doi.org/10.1007/s11237-005-0035-7
dc.relation.urihttps://doi.org/10.1016/j.cattod.2005.07.056
dc.relation.urihttps://doi.org/10.1016/j.apcata.2006.09.039
dc.relation.urihttps://doi.org/10.1016/j.cattod.2011.02.031
dc.relation.urihttps://doi.org/10.4236/mrc.2013.24017
dc.relation.urihttps://doi.org/10.1007/s10934-018-0685-1
dc.relation.urihttps://doi.org/10.1260/0263617001493512
dc.relation.urihttps://doi.org/10.1007/s11237-013-9308-8
dc.relation.urihttps://doi.org/10.1007/s11237-011-9205-y
dc.relation.urihttps://doi.org/10.1023/A:1025729530977
dc.relation.urihttps://doi.org/10.1260/0263617011494376
dc.relation.urihttp://www.ajbasweb.com/old/ajbas/2017/January/27-34.pdf
dc.subjectізомеризація н-гексану
dc.subjectцеоліт типу морденіту
dc.subjectнікель
dc.subjectпаладій
dc.subjectактивність
dc.subjectселективність
dc.subjectn-hexane isomerization
dc.subjectmordenite zeolite
dc.subjectactivity
dc.subjectnickel
dc.subjectpalladium
dc.subjectactivity
dc.subjectselectivity
dc.titlen-Hexane Isomerization Over Nickel-Containing Mordenite Zeolite
dc.title.alternativeІзомеризація н-гексану на нікельвмісному цеоліті типу морденіту
dc.typeArticle
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Patrylak L, Krylova M., Pertko O., Voloshyna Yu., Yakovenko A., 2020
dc.contributor.affiliationV. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
dc.format.pages5
dc.identifier.citationenn-Hexane Isomerization Over Nickel-Containing Mordenite Zeolite / Lyubov Patrylak, Mariya Krylova, Oleksandra Pertko, Yuliya Voloshyna, Angela Yakovenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 234–238.
dc.identifier.doidoi.org/10.23939/chcht14.02.234
dc.relation.references[1] Primo A., Garcia H.: Chem. Soc. Rev., 2014, 43, 7548. https://doi.org/10.1039/C3CS60394F
dc.relation.references[2] Liu S., Ren J., Zhang H. et al.: J. Catal., 2016, 335, 11. https://doi.org/10.1016/j.jcat.2015.12.009
dc.relation.references[3] Dhar A., Vekariya R., Sharma P.: Petroleum, 2017, 3, 489. https://doi.org/10.1016/j.petlm.2017.02.001
dc.relation.references[4] Izutsu Y., Oku Y., Hidaka Y. et al.: Catal. Lett., 2013, 143, 486. https://doi.org/10.1007/s10562-013-0973-y
dc.relation.references[5] Ghouri A., Usman M.: J. Chem. Soc. Pak., 2017, 39, 919.
dc.relation.references[6] Dhar A., Vekariya R., Bhadja P.: Cogent Chem., 2018, 4, 1514686. https://doi.org/10.1080/23312009.2018.1514686
dc.relation.references[7] Dhar A., Dutta A., Castillo-Araiza C. et al.: Int. J. Chem. Reactor Eng., 2016, 14, 795. https://doi.org/10.1515/ijcre-2015-0052
dc.relation.references[8] Tamizhdurai P., Lavanya M., Meenakshisundaram A. et al.: Adv. Por. Mater., 2017, 5, 169. https://doi.org/10.1166/apm.2017.1127
dc.relation.references[9] Yun S., Seong M., Park Y. et al.: J. Nanosci. Nanotechnol., 2015, 15, 647. https://doi.org/10.1166/jnn.2015.8328
dc.relation.references[10] Patrylak L.: Adsortp. Sci. Technol., 1999, 17, 115. https://doi.org/10.1177/026361749901700205
dc.relation.references[11] Brei V.: Theor. Experim. Chem., 2005, 41, 165. https://doi.org/10.1007/s11237-005-0035-7
dc.relation.references[12] Yoshioka C., Garetto T., Cardoso D.: Catal. Today, 2005, 107-108, 693. https://doi.org/10.1016/j.cattod.2005.07.056
dc.relation.references[13]Jordao M., Simoes V., Cardoso D.: Appl. Catal. A, 2007, 319, 1. https://doi.org/10.1016/j.apcata.2006.09.039
dc.relation.references[14] Lima P., Garetto T., Cavalcante C.L.Jr. et al.: Catal. Today, 2011, 172, 195. https://doi.org/10.1016/j.cattod.2011.02.031
dc.relation.references[15] Martins G., dos Santos E., Rodrigues M. et al.: Modern Res. Catal., 2013, 2, 119. https://doi.org/10.4236/mrc.2013.24017
dc.relation.references[16] Patrylak L., Krylova M., Pertko O. et al.: J. Porous Mater., 2019, 26, 861. https://doi.org/10.1007/s10934-018-0685-1
dc.relation.references[17] Patrylak L.: Adsorp. Sci. Technol., 2000, 18, 399. https://doi.org/10.1260/0263617001493512
dc.relation.references[18] Patrylak K.,, Patrylak L.,, Repetskyi I.: Theor. Experim. Chem., 2013, 49, 143. https://doi.org/10.1007/s11237-013-9308-8
dc.relation.references[19] Patrylak K., Patrylak L., Voloshyna Yu. et al.: Theor. Experim. Chem., 2011, 47, 205. https://doi.org/10.1007/s11237-011-9205-y
dc.relation.references[20] Patrylak L., Manza I., Vypirailenko V. et al.: Theor. Experim. Chem., 2003, 39, 263. https://doi.org/10.1023/A:1025729530977
dc.relation.references[21] Rouquerol F., Rouquerol J., Sing K.: Adsorption by Powders and Porous Solids. Principles, Methodology and Applications. Academic Press, San Diego 1999.
dc.relation.references[22] Patrylak L., Likhnyovskyi R., Vypyraylenko V. et al.: Adsorpt. Sci. Technol., 2001, 19, 525. https://doi.org/10.1260/0263617011494376
dc.relation.references[23] Patrylak L.: Zh. Phys. Khim., 2005, 79, 1658.
dc.relation.references[24] Smail H., Shareef K., Ramli Z.: Austral. J. Bas. Appl. Sci., 2017, 11, 27. http://www.ajbasweb.com/old/ajbas/2017/January/27-34.pdf
dc.relation.referencesen[1] Primo A., Garcia H., Chem. Soc. Rev., 2014, 43, 7548. https://doi.org/10.1039/P.3CS60394F
dc.relation.referencesen[2] Liu S., Ren J., Zhang H. et al., J. Catal., 2016, 335, 11. https://doi.org/10.1016/j.jcat.2015.12.009
dc.relation.referencesen[3] Dhar A., Vekariya R., Sharma P., Petroleum, 2017, 3, 489. https://doi.org/10.1016/j.petlm.2017.02.001
dc.relation.referencesen[4] Izutsu Y., Oku Y., Hidaka Y. et al., Catal. Lett., 2013, 143, 486. https://doi.org/10.1007/s10562-013-0973-y
dc.relation.referencesen[5] Ghouri A., Usman M., J. Chem. Soc. Pak., 2017, 39, 919.
dc.relation.referencesen[6] Dhar A., Vekariya R., Bhadja P., Cogent Chem., 2018, 4, 1514686. https://doi.org/10.1080/23312009.2018.1514686
dc.relation.referencesen[7] Dhar A., Dutta A., Castillo-Araiza C. et al., Int. J. Chem. Reactor Eng., 2016, 14, 795. https://doi.org/10.1515/ijcre-2015-0052
dc.relation.referencesen[8] Tamizhdurai P., Lavanya M., Meenakshisundaram A. et al., Adv. Por. Mater., 2017, 5, 169. https://doi.org/10.1166/apm.2017.1127
dc.relation.referencesen[9] Yun S., Seong M., Park Y. et al., J. Nanosci. Nanotechnol., 2015, 15, 647. https://doi.org/10.1166/jnn.2015.8328
dc.relation.referencesen[10] Patrylak L., Adsortp. Sci. Technol., 1999, 17, 115. https://doi.org/10.1177/026361749901700205
dc.relation.referencesen[11] Brei V., Theor. Experim. Chem., 2005, 41, 165. https://doi.org/10.1007/s11237-005-0035-7
dc.relation.referencesen[12] Yoshioka C., Garetto T., Cardoso D., Catal. Today, 2005, 107-108, 693. https://doi.org/10.1016/j.cattod.2005.07.056
dc.relation.referencesen[13]Jordao M., Simoes V., Cardoso D., Appl. Catal. A, 2007, 319, 1. https://doi.org/10.1016/j.apcata.2006.09.039
dc.relation.referencesen[14] Lima P., Garetto T., Cavalcante C.L.Jr. et al., Catal. Today, 2011, 172, 195. https://doi.org/10.1016/j.cattod.2011.02.031
dc.relation.referencesen[15] Martins G., dos Santos E., Rodrigues M. et al., Modern Res. Catal., 2013, 2, 119. https://doi.org/10.4236/mrc.2013.24017
dc.relation.referencesen[16] Patrylak L., Krylova M., Pertko O. et al., J. Porous Mater., 2019, 26, 861. https://doi.org/10.1007/s10934-018-0685-1
dc.relation.referencesen[17] Patrylak L., Adsorp. Sci. Technol., 2000, 18, 399. https://doi.org/10.1260/0263617001493512
dc.relation.referencesen[18] Patrylak K.,, Patrylak L.,, Repetskyi I., Theor. Experim. Chem., 2013, 49, 143. https://doi.org/10.1007/s11237-013-9308-8
dc.relation.referencesen[19] Patrylak K., Patrylak L., Voloshyna Yu. et al., Theor. Experim. Chem., 2011, 47, 205. https://doi.org/10.1007/s11237-011-9205-y
dc.relation.referencesen[20] Patrylak L., Manza I., Vypirailenko V. et al., Theor. Experim. Chem., 2003, 39, 263. https://doi.org/10.1023/A:1025729530977
dc.relation.referencesen[21] Rouquerol F., Rouquerol J., Sing K., Adsorption by Powders and Porous Solids. Principles, Methodology and Applications. Academic Press, San Diego 1999.
dc.relation.referencesen[22] Patrylak L., Likhnyovskyi R., Vypyraylenko V. et al., Adsorpt. Sci. Technol., 2001, 19, 525. https://doi.org/10.1260/0263617011494376
dc.relation.referencesen[23] Patrylak L., Zh. Phys. Khim., 2005, 79, 1658.
dc.relation.referencesen[24] Smail H., Shareef K., Ramli Z., Austral. J. Bas. Appl. Sci., 2017, 11, 27. http://www.ajbasweb.com/old/ajbas/2017/January/27-34.pdf
dc.citation.volume14
dc.citation.issue2
dc.citation.spage234
dc.citation.epage238
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
Appears in Collections:Chemistry & Chemical Technology. – 2020. – Vol. 14, No. 2

Files in This Item:
File Description SizeFormat 
2020v14n2_Patrylak_L-n_Hexane_Isomerization_234-238.pdf385.2 kBAdobe PDFView/Open
2020v14n2_Patrylak_L-n_Hexane_Isomerization_234-238__COVER.png534.27 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.