DC Field | Value | Language |
dc.contributor.author | Patrylak, Lyubov | |
dc.contributor.author | Krylova, Mariya | |
dc.contributor.author | Pertko, Oleksandra | |
dc.contributor.author | Voloshyna, Yuliya | |
dc.contributor.author | Yakovenko, Angela | |
dc.date.accessioned | 2020-12-30T08:53:21Z | - |
dc.date.available | 2020-12-30T08:53:21Z | - |
dc.date.created | 2020-01-24 | |
dc.date.issued | 2020-01-24 | |
dc.identifier.citation | n-Hexane Isomerization Over Nickel-Containing Mordenite Zeolite / Lyubov Patrylak, Mariya Krylova, Oleksandra Pertko, Yuliya Voloshyna, Angela Yakovenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 234–238. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/55786 | - |
dc.description.abstract | Синтезовано зразки нікельвмісного морденіту внаслідок просочування із водних розчинів нітрату нікелю.
З використанням методу низькотемпературної адсорбції/
десорбції азоту та мікроімпульсної ізомеризації н-гексану
вивчено пористі та каталітичні властивості. За температур
523–573 К максимальні виходи ізомерів становлять 10-12 % мас. для вмісту Ni 1–5 % мас. | |
dc.description.abstract | Nickel-containing mordenite samples were
synthesized by impregnation from aqua's solution of
nickel nitrate. Porous and catalytic characteristics of the
catalysts were studied by means of low temperature
nitrogen adsorption/desorption and micropulse n-hexane
isomerisation. The maximum isomer yields are 10-12 wt % for 1-5 wt % Ni content at 523–573 K. | |
dc.format.extent | 234-238 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (14), 2020 | |
dc.relation.uri | https://doi.org/10.1039/C3CS60394F | |
dc.relation.uri | https://doi.org/10.1016/j.jcat.2015.12.009 | |
dc.relation.uri | https://doi.org/10.1016/j.petlm.2017.02.001 | |
dc.relation.uri | https://doi.org/10.1007/s10562-013-0973-y | |
dc.relation.uri | https://doi.org/10.1080/23312009.2018.1514686 | |
dc.relation.uri | https://doi.org/10.1515/ijcre-2015-0052 | |
dc.relation.uri | https://doi.org/10.1166/apm.2017.1127 | |
dc.relation.uri | https://doi.org/10.1166/jnn.2015.8328 | |
dc.relation.uri | https://doi.org/10.1177/026361749901700205 | |
dc.relation.uri | https://doi.org/10.1007/s11237-005-0035-7 | |
dc.relation.uri | https://doi.org/10.1016/j.cattod.2005.07.056 | |
dc.relation.uri | https://doi.org/10.1016/j.apcata.2006.09.039 | |
dc.relation.uri | https://doi.org/10.1016/j.cattod.2011.02.031 | |
dc.relation.uri | https://doi.org/10.4236/mrc.2013.24017 | |
dc.relation.uri | https://doi.org/10.1007/s10934-018-0685-1 | |
dc.relation.uri | https://doi.org/10.1260/0263617001493512 | |
dc.relation.uri | https://doi.org/10.1007/s11237-013-9308-8 | |
dc.relation.uri | https://doi.org/10.1007/s11237-011-9205-y | |
dc.relation.uri | https://doi.org/10.1023/A:1025729530977 | |
dc.relation.uri | https://doi.org/10.1260/0263617011494376 | |
dc.relation.uri | http://www.ajbasweb.com/old/ajbas/2017/January/27-34.pdf | |
dc.subject | ізомеризація н-гексану | |
dc.subject | цеоліт типу морденіту | |
dc.subject | нікель | |
dc.subject | паладій | |
dc.subject | активність | |
dc.subject | селективність | |
dc.subject | n-hexane isomerization | |
dc.subject | mordenite zeolite | |
dc.subject | activity | |
dc.subject | nickel | |
dc.subject | palladium | |
dc.subject | activity | |
dc.subject | selectivity | |
dc.title | n-Hexane Isomerization Over Nickel-Containing Mordenite Zeolite | |
dc.title.alternative | Ізомеризація н-гексану на нікельвмісному цеоліті типу морденіту | |
dc.type | Article | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.rights.holder | © Patrylak L, Krylova M., Pertko O., Voloshyna Yu., Yakovenko A., 2020 | |
dc.contributor.affiliation | V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine | |
dc.format.pages | 5 | |
dc.identifier.citationen | n-Hexane Isomerization Over Nickel-Containing Mordenite Zeolite / Lyubov Patrylak, Mariya Krylova, Oleksandra Pertko, Yuliya Voloshyna, Angela Yakovenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 234–238. | |
dc.identifier.doi | doi.org/10.23939/chcht14.02.234 | |
dc.relation.references | [1] Primo A., Garcia H.: Chem. Soc. Rev., 2014, 43, 7548. https://doi.org/10.1039/C3CS60394F | |
dc.relation.references | [2] Liu S., Ren J., Zhang H. et al.: J. Catal., 2016, 335, 11. https://doi.org/10.1016/j.jcat.2015.12.009 | |
dc.relation.references | [3] Dhar A., Vekariya R., Sharma P.: Petroleum, 2017, 3, 489. https://doi.org/10.1016/j.petlm.2017.02.001 | |
dc.relation.references | [4] Izutsu Y., Oku Y., Hidaka Y. et al.: Catal. Lett., 2013, 143, 486. https://doi.org/10.1007/s10562-013-0973-y | |
dc.relation.references | [5] Ghouri A., Usman M.: J. Chem. Soc. Pak., 2017, 39, 919. | |
dc.relation.references | [6] Dhar A., Vekariya R., Bhadja P.: Cogent Chem., 2018, 4, 1514686. https://doi.org/10.1080/23312009.2018.1514686 | |
dc.relation.references | [7] Dhar A., Dutta A., Castillo-Araiza C. et al.: Int. J. Chem. Reactor Eng., 2016, 14, 795. https://doi.org/10.1515/ijcre-2015-0052 | |
dc.relation.references | [8] Tamizhdurai P., Lavanya M., Meenakshisundaram A. et al.: Adv. Por. Mater., 2017, 5, 169. https://doi.org/10.1166/apm.2017.1127 | |
dc.relation.references | [9] Yun S., Seong M., Park Y. et al.: J. Nanosci. Nanotechnol., 2015, 15, 647. https://doi.org/10.1166/jnn.2015.8328 | |
dc.relation.references | [10] Patrylak L.: Adsortp. Sci. Technol., 1999, 17, 115. https://doi.org/10.1177/026361749901700205 | |
dc.relation.references | [11] Brei V.: Theor. Experim. Chem., 2005, 41, 165. https://doi.org/10.1007/s11237-005-0035-7 | |
dc.relation.references | [12] Yoshioka C., Garetto T., Cardoso D.: Catal. Today, 2005, 107-108, 693. https://doi.org/10.1016/j.cattod.2005.07.056 | |
dc.relation.references | [13]Jordao M., Simoes V., Cardoso D.: Appl. Catal. A, 2007, 319, 1. https://doi.org/10.1016/j.apcata.2006.09.039 | |
dc.relation.references | [14] Lima P., Garetto T., Cavalcante C.L.Jr. et al.: Catal. Today, 2011, 172, 195. https://doi.org/10.1016/j.cattod.2011.02.031 | |
dc.relation.references | [15] Martins G., dos Santos E., Rodrigues M. et al.: Modern Res. Catal., 2013, 2, 119. https://doi.org/10.4236/mrc.2013.24017 | |
dc.relation.references | [16] Patrylak L., Krylova M., Pertko O. et al.: J. Porous Mater., 2019, 26, 861. https://doi.org/10.1007/s10934-018-0685-1 | |
dc.relation.references | [17] Patrylak L.: Adsorp. Sci. Technol., 2000, 18, 399. https://doi.org/10.1260/0263617001493512 | |
dc.relation.references | [18] Patrylak K.,, Patrylak L.,, Repetskyi I.: Theor. Experim. Chem., 2013, 49, 143. https://doi.org/10.1007/s11237-013-9308-8 | |
dc.relation.references | [19] Patrylak K., Patrylak L., Voloshyna Yu. et al.: Theor. Experim. Chem., 2011, 47, 205. https://doi.org/10.1007/s11237-011-9205-y | |
dc.relation.references | [20] Patrylak L., Manza I., Vypirailenko V. et al.: Theor. Experim. Chem., 2003, 39, 263. https://doi.org/10.1023/A:1025729530977 | |
dc.relation.references | [21] Rouquerol F., Rouquerol J., Sing K.: Adsorption by Powders and Porous Solids. Principles, Methodology and Applications. Academic Press, San Diego 1999. | |
dc.relation.references | [22] Patrylak L., Likhnyovskyi R., Vypyraylenko V. et al.: Adsorpt. Sci. Technol., 2001, 19, 525. https://doi.org/10.1260/0263617011494376 | |
dc.relation.references | [23] Patrylak L.: Zh. Phys. Khim., 2005, 79, 1658. | |
dc.relation.references | [24] Smail H., Shareef K., Ramli Z.: Austral. J. Bas. Appl. Sci., 2017, 11, 27. http://www.ajbasweb.com/old/ajbas/2017/January/27-34.pdf | |
dc.relation.referencesen | [1] Primo A., Garcia H., Chem. Soc. Rev., 2014, 43, 7548. https://doi.org/10.1039/P.3CS60394F | |
dc.relation.referencesen | [2] Liu S., Ren J., Zhang H. et al., J. Catal., 2016, 335, 11. https://doi.org/10.1016/j.jcat.2015.12.009 | |
dc.relation.referencesen | [3] Dhar A., Vekariya R., Sharma P., Petroleum, 2017, 3, 489. https://doi.org/10.1016/j.petlm.2017.02.001 | |
dc.relation.referencesen | [4] Izutsu Y., Oku Y., Hidaka Y. et al., Catal. Lett., 2013, 143, 486. https://doi.org/10.1007/s10562-013-0973-y | |
dc.relation.referencesen | [5] Ghouri A., Usman M., J. Chem. Soc. Pak., 2017, 39, 919. | |
dc.relation.referencesen | [6] Dhar A., Vekariya R., Bhadja P., Cogent Chem., 2018, 4, 1514686. https://doi.org/10.1080/23312009.2018.1514686 | |
dc.relation.referencesen | [7] Dhar A., Dutta A., Castillo-Araiza C. et al., Int. J. Chem. Reactor Eng., 2016, 14, 795. https://doi.org/10.1515/ijcre-2015-0052 | |
dc.relation.referencesen | [8] Tamizhdurai P., Lavanya M., Meenakshisundaram A. et al., Adv. Por. Mater., 2017, 5, 169. https://doi.org/10.1166/apm.2017.1127 | |
dc.relation.referencesen | [9] Yun S., Seong M., Park Y. et al., J. Nanosci. Nanotechnol., 2015, 15, 647. https://doi.org/10.1166/jnn.2015.8328 | |
dc.relation.referencesen | [10] Patrylak L., Adsortp. Sci. Technol., 1999, 17, 115. https://doi.org/10.1177/026361749901700205 | |
dc.relation.referencesen | [11] Brei V., Theor. Experim. Chem., 2005, 41, 165. https://doi.org/10.1007/s11237-005-0035-7 | |
dc.relation.referencesen | [12] Yoshioka C., Garetto T., Cardoso D., Catal. Today, 2005, 107-108, 693. https://doi.org/10.1016/j.cattod.2005.07.056 | |
dc.relation.referencesen | [13]Jordao M., Simoes V., Cardoso D., Appl. Catal. A, 2007, 319, 1. https://doi.org/10.1016/j.apcata.2006.09.039 | |
dc.relation.referencesen | [14] Lima P., Garetto T., Cavalcante C.L.Jr. et al., Catal. Today, 2011, 172, 195. https://doi.org/10.1016/j.cattod.2011.02.031 | |
dc.relation.referencesen | [15] Martins G., dos Santos E., Rodrigues M. et al., Modern Res. Catal., 2013, 2, 119. https://doi.org/10.4236/mrc.2013.24017 | |
dc.relation.referencesen | [16] Patrylak L., Krylova M., Pertko O. et al., J. Porous Mater., 2019, 26, 861. https://doi.org/10.1007/s10934-018-0685-1 | |
dc.relation.referencesen | [17] Patrylak L., Adsorp. Sci. Technol., 2000, 18, 399. https://doi.org/10.1260/0263617001493512 | |
dc.relation.referencesen | [18] Patrylak K.,, Patrylak L.,, Repetskyi I., Theor. Experim. Chem., 2013, 49, 143. https://doi.org/10.1007/s11237-013-9308-8 | |
dc.relation.referencesen | [19] Patrylak K., Patrylak L., Voloshyna Yu. et al., Theor. Experim. Chem., 2011, 47, 205. https://doi.org/10.1007/s11237-011-9205-y | |
dc.relation.referencesen | [20] Patrylak L., Manza I., Vypirailenko V. et al., Theor. Experim. Chem., 2003, 39, 263. https://doi.org/10.1023/A:1025729530977 | |
dc.relation.referencesen | [21] Rouquerol F., Rouquerol J., Sing K., Adsorption by Powders and Porous Solids. Principles, Methodology and Applications. Academic Press, San Diego 1999. | |
dc.relation.referencesen | [22] Patrylak L., Likhnyovskyi R., Vypyraylenko V. et al., Adsorpt. Sci. Technol., 2001, 19, 525. https://doi.org/10.1260/0263617011494376 | |
dc.relation.referencesen | [23] Patrylak L., Zh. Phys. Khim., 2005, 79, 1658. | |
dc.relation.referencesen | [24] Smail H., Shareef K., Ramli Z., Austral. J. Bas. Appl. Sci., 2017, 11, 27. http://www.ajbasweb.com/old/ajbas/2017/January/27-34.pdf | |
dc.citation.volume | 14 | |
dc.citation.issue | 2 | |
dc.citation.spage | 234 | |
dc.citation.epage | 238 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry & Chemical Technology. – 2020. – Vol. 14, No. 2
|