DC Field | Value | Language |
dc.contributor.author | Хоптар, А. | |
dc.contributor.author | Khoptar, A. | |
dc.date.accessioned | 2020-12-21T08:33:39Z | - |
dc.date.available | 2020-12-21T08:33:39Z | - |
dc.date.created | 2020-01-22 | |
dc.date.issued | 2020-01-22 | |
dc.identifier.citation | Хоптар А. Відновлення вертикального профілю вмісту водяної пари в тропосфері Землі на основі даних мульти-GNSS спостережень / А. Хоптар // Сучасні досягнення геодезичної науки та виробництва. — Львів : Видавництво Львівської політехніки, 2020. — Том 2(40). — С. 41–49. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/55754 | - |
dc.format.extent | 41-49 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Сучасні досягнення геодезичної науки та виробництва, 2020 | |
dc.relation.ispartof | Modern achievements of geodesic science and industry, 2020 | |
dc.relation.uri | http://weather | |
dc.relation.uri | http://weather.uwyo | |
dc.subject | Глобальні навігаційні супутникові системи (Global Navigation Satellite Systems | |
dc.subject | GNSS) | |
dc.subject | муль-ти-GNSS | |
dc.subject | абсолютний метод точного позиціонування (Precise Point Positioning | |
dc.subject | PPP) | |
dc.subject | GNSS-томографія | |
dc.subject | Global Navigation Satellite Systems (GNSS) | |
dc.subject | multi-GNSS | |
dc.subject | Precise Point Positioning (PPP) | |
dc.subject | GNSS-tomography | |
dc.title | Відновлення вертикального профілю вмісту водяної пари в тропосфері Землі на основі даних мульти-GNSS спостережень | |
dc.title.alternative | Reconstruction of the vertical profile of the water vapor content in the troposphere based on data from multi-GNSS observations | |
dc.type | Article | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020; © Західне геодезичне товариство, 2020 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.format.pages | 9 | |
dc.identifier.citationen | Khoptar A. Reconstruction of the vertical profile of the water vapor content in the troposphere based on data from multi-GNSS observations / A. Khoptar // Modern achievements of geodesic science and industry. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2(40). — P. 41–49. | |
dc.relation.references | Bender M., Dick G, Ge M., Deng Z., Wickert J., Kahle H.G., Tetzlaff G. (2011). Development of a GNSS water vapour tomography system using algebraic reconstruction | |
dc.relation.references | techniques. Advances in Space Research, 47(10), pp. 1704–1720. | |
dc.relation.references | Bevis M., Businger S., Herring T. A., Rocken C., Anthes R. A., Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapour using the Global Positioning System. | |
dc.relation.references | Journal of Geophysical Research: Atmospheres, 97(D14), pp. 15787–15801. | |
dc.relation.references | Boehm J., Niell A., Tregoning P., Schuh H. (2006). | |
dc.relation.references | Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophysical Research Letters, 33(7). | |
dc.relation.references | Flores A. (1999). Atmospheric tomography using satellite radio signal: Ph. D. Dis. Universitat Politècnica de Catalunya. | |
dc.relation.references | Flores A., Ruffini, G., Rius, A. (2000a). 4D tropospheric tomography using GPS slant wet delays. Annales Geophysicae, 18(2), pp. 223–234 Flores A., Gradinarsky L. P., Elosegui P., | |
dc.relation.references | Elgered G., Davis J. L., Rius A. (2000b). Sensing atmospheric structure: tropospheric tomographic results of the small-scale GPS campaign at the Onsala space observatory. Earth, | |
dc.relation.references | planets and space, 52(11), pp. 941–945. | |
dc.relation.references | Hirahara K. (2000). Local GPS tropospheric tomography, Earth, planets and space, 52(11), pp. 935–939. | |
dc.relation.references | Kruse L. P. (2001). Spatial and temporal distribution of atmospheric water vapor using space geodetic techniques. Doctoral dissertation, ETH Zurich. | |
dc.relation.references | Lagler K., Schindelegger M., Böhm j., Krásná H., Nilsson T. (2013). GPT2: Empirical slant delay model for radio space geodetic techniques. Geophysical research letters, 40(6), | |
dc.relation.references | pp. 1069–1073. | |
dc.relation.references | Möller G., Landskron D. (2019). Atmospheric bending effects in GNSS tomography. Atmospheric Measurement Techniques, 12 (1), pp. 23–34. | |
dc.relation.references | Pincus R., Beljaars A., Buehler S. A., Kirchengast G., Ladstaedter F., Whitaker J. S. (2017). The representation of tropospheric water vapor over low-latitude oceans in (re-)analysis: | |
dc.relation.references | Errors, impacts, and the ability to exploit current and prospective observations. Surveys in Geophysics, 38(6), pp. 1399–1423. | |
dc.relation.references | Savchuk S., Khoptar A. (2019). Analysis of the tropospheric delay estimates in software package – GipsyX based on multi-GNSS observations. Сучасні досягнення геодезичної науки | |
dc.relation.references | та виробництва, Вип. І (37), С. 57–63. | |
dc.relation.references | Savchuk S., Khoptar A., Sosonka I. (2020) Processing of a regional network of GNSS stations by the PPP method, Wybrane aspekty zabezpieczenia nawigacji lotniczej, Część 2, Seria | |
dc.relation.references | wydawnicza współczesna nawigacja, Tom II, pp. 159–171. | |
dc.relation.references | Zhao Q., Yao Y., Yao W. (2017). A troposphere tomography method considering the weighting of input information, Annales Geophysicae, 35(6), pp. 1327–1340. | |
dc.relation.references | Інтернет-ресурс Служби атмосферних досліджень університету Вайомінга (США). URL: http://weather. uwyo.edu/upperair/soun | |
dc.relation.referencesen | Bender M., Dick G, Ge M., Deng Z., Wickert J., Kahle H.G., Tetzlaff G. (2011). Development of a GNSS water vapour tomography system using algebraic reconstruction | |
dc.relation.referencesen | techniques. Advances in Space Research, 47(10), pp. 1704–1720. | |
dc.relation.referencesen | Bevis M., Businger S., Herring T. A., Rocken C., Anthes R. A., Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapour using the Global Positioning System. | |
dc.relation.referencesen | Journal of Geophysical Research: Atmospheres, 97(D14), pp. 15787–15801. | |
dc.relation.referencesen | Boehm J., Niell A., Tregoning P., Schuh H. (2006). Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophysical Research | |
dc.relation.referencesen | Letters, 33(7). | |
dc.relation.referencesen | Flores A. (1999). Atmospheric tomography using satellite radio signal: Ph.D. Dis. Universitat Politècnica de Catalunya. | |
dc.relation.referencesen | Flores A., Ruffini, G., Rius, A. (2000a). 4D tropospheric tomography using GPS slant wet delays. Annales Geophysicae, 18(2), pp. 223–234 Flores A., Gradinarsky L. P., Elosegui P., | |
dc.relation.referencesen | Elgered G., Davis J. L., Rius A. (2000b). Sensing atmospheric structure: tropospheric tomographic results of the small-scale GPS campaign at the Onsala space observatory. Earth, | |
dc.relation.referencesen | planets and space, 52(11), pp. 941–945. | |
dc.relation.referencesen | Hirahara K. (2000). Local GPS tropospheric tomography, Earth, planets and space, 52(11), pp. 935–939. | |
dc.relation.referencesen | Kruse L. P. (2001). Spatial and temporal distribution of atmospheric water vapor using space geodetic techniques. | |
dc.relation.referencesen | Doctoral dissertation, ETH Zurich. | |
dc.relation.referencesen | Lagler K., Schindelegger M., Böhm j., Krásná H., Nilsson T. (2013). GPT2: Empirical slant delay model for radio space geodetic techniques. Geophysical research letters, 40(6), | |
dc.relation.referencesen | pp. 1069–1073. | |
dc.relation.referencesen | Möller G., Landskron D. (2019). Atmospheric bending effects in GNSS tomography. Atmospheric Measurement Techniques, 12(1), pp. 23–34. | |
dc.relation.referencesen | Pincus R., Beljaars A., Buehler S. A., Kirchengast G., Ladstaedter F., Whitaker J. S. (2017). The representation of tropospheric water vapor over low-latitude oceans in (re-)analysis: | |
dc.relation.referencesen | Errors, impacts, and the ability to exploit current and prospective observations. Surveys in Geophysics, 38(6), pp. 1399–1423. | |
dc.relation.referencesen | Savchuk S., Khoptar A. (2019). Analysis of the tropospheric delay estimates in software package – GipsyX based on multi-GNSS observations. Suchasni dosiahnennia heodezychnoi | |
dc.relation.referencesen | nauky ta vyrobnytstva, Vyp. I (37), pp. 57–63. | |
dc.relation.referencesen | Savchuk S., Khoptar A., Sosonka I. (2020) Processing of a regional network of GNSS stations by the PPP method, Wybrane aspekty zabezpieczenia nawigacji lotniczej, Część 2, Seria | |
dc.relation.referencesen | wydawnicza współczesna nawigacja, Tom II, pp. 159–171. | |
dc.relation.referencesen | University of Wyoming Department of Atmospheric Science Service (USA), Access mode: http://weather.uwyo. edu/upperair/sounding.html (Access date: May of 2020). | |
dc.relation.referencesen | Zhao Q., Yao Y., Yao W. (2017). A troposphere tomography method considering the weighting of input information, Annales Geophysicae, 35(6), pp. 1327–1340. | |
dc.citation.journalTitle | Сучасні досягнення геодезичної науки та виробництва | |
dc.citation.volume | 2(40) | |
dc.citation.spage | 41 | |
dc.citation.epage | 49 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.subject.udc | 528.2/.3 | |
Appears in Collections: | Сучасні досягнення геодезичної науки та виробництва. – 2020. – Випуск 2(40)
|