DC Field | Value | Language |
dc.contributor.author | Kondratenko, Yuriy | |
dc.contributor.author | Kondratenko, Nina | |
dc.coverage.temporal | 21-25 August 2018, Lviv | |
dc.date.accessioned | 2020-06-19T12:06:03Z | - |
dc.date.available | 2020-06-19T12:06:03Z | - |
dc.date.created | 2018-02-28 | |
dc.date.issued | 2018-02-28 | |
dc.identifier.citation | Kondratenko Y. Computational Library of the Direct Analytic Models for Real-Time Fuzzy Information Processing / Yuriy Kondratenko, Nina Kondratenko // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 38–43. — (Big Data & Data Science Using Intelligent Approaches). | |
dc.identifier.isbn | © Національний університет „Львівська політехніка“, 2018 | |
dc.identifier.isbn | © Національний університет „Львівська політехніка“, 2018 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/52543 | - |
dc.description.abstract | This paper reveals the computational library of
the analytic models for the results of fuzzy arithmetic
operations with fuzzy sets. In particular, the focus is on the
synthesis of the universal inverse and direct models for
maximum of triangular fuzzy numbers with different masks of
their parameters. The results of the study verify the efficiency
of the suggested computational library with soft computing
models for fuzzy information processing in real-time control
and decision making. | |
dc.format.extent | 38-43 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Data stream mining and processing : proceedings of the IEEE second international conference, 2018 | |
dc.relation.uri | https://doi.org/10.1063/1.3037065 | |
dc.relation.uri | https://doi.org/10.1016/j.fss.2015.06.011 | |
dc.relation.uri | https://doi.org/10.1007/978-3-319-69989-9_31 | |
dc.relation.uri | https://doi.org/10.1007/978-3-642-35641-4_36 | |
dc.relation.uri | http://ojs.academypublisher.com/index.php/jsw/article/download/0404331338/1061 | |
dc.relation.uri | https://doi.org/10.1007/978-3-319-75792-6_8 | |
dc.relation.uri | http://computingonline.net/computing/article/view/868 | |
dc.relation.uri | https://doi.org/10.1007/978-3-642-31718-7_7 | |
dc.relation.uri | https://doi.org/10.1007/978-3-319-03674-8_27 | |
dc.relation.uri | https://doi.org/10.1007/s10559-011-9371-x | |
dc.subject | computational library | |
dc.subject | fuzzy number | |
dc.subject | arithmetic operation | |
dc.subject | maximum | |
dc.subject | fuzzy information processing | |
dc.title | Computational Library of the Direct Analytic Models for Real-Time Fuzzy Information Processing | |
dc.type | Conference Abstract | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2018 | |
dc.contributor.affiliation | Petro Mohyla Black Sea National University | |
dc.contributor.affiliation | University of South Carolina | |
dc.format.pages | 6 | |
dc.identifier.citationen | Kondratenko Y. Computational Library of the Direct Analytic Models for Real-Time Fuzzy Information Processing / Yuriy Kondratenko, Nina Kondratenko // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 38–43. — (Big Data & Data Science Using Intelligent Approaches). | |
dc.relation.references | [1] D. Simon, “Design and rule base reduction of a fuzzy filter for the estimation of motor currents,” International Journal of Approximate Reasoning, 25, pp. 145-167, 2000. | |
dc.relation.references | [2] Y. P. Kondratenko, and E. Y. M. Al Zubi, “The Optimisation Approach for Increasing Efficiency of Digital Fuzzy Controllers,’ 20th Int. DAAAM Symp. "Intelligent Manufacturing and Automation", Published by DAAAM International, Vienna, Austria, pp. 1589-1591, 2009. | |
dc.relation.references | [3] S. Encheva, Y. Kondratenko, M. Z. Solesvik, S. Tumin, “Decision Support Systems in Logistics,” AIP Conference Proc. 1060, 254-256, 2008, https://doi.org/10.1063/1.3037065 | |
dc.relation.references | [4] Y. P. Kondratenko, N. Y .Kondratenko, “Soft Computing Analytic Models for Increasing Efficiency of Fuzzy Information Processing in Decision Support Systems,” Chapter in book: Decision Making: Processes, Behavioral Influences and Role in Business Management, R. Hudson (Ed.), Nova Science Publishers, New York, 2015, pp. 41-78. | |
dc.relation.references | [5] J. Kacprzyk, S. Zadrozny, and G. De Tré, “Fuzziness in database management systems: Half a century of developments and future prospects,” Fuzzy Sets and Systems vol, 281, pp. 300-307, 2015, https://doi.org/10.1016/j.fss.2015.06.011 | |
dc.relation.references | [6] J Gil-Aluja,. Investment in Uncertainty. Kluwer Academic Publishers, Dordrecht, Boston, London, 1999. | |
dc.relation.references | [7] L. A. Zadeh, “Fuzzy Sets,” Information & Control, 8, pp. 338-353, 1965. | |
dc.relation.references | [8] R.Yager, and D. Filev, Essential of Fuzzy Modeling and Control. Wiley, New York, 1994. | |
dc.relation.references | [9] M. Jamshidi, V. Kreinovitch, J. Kacprzyk, (Eds), Advance Trends in Soft Computing. Proceedings of WCSC 2013, San Antonio, Texas, USA, STUDFUZZ 312, Springer, 2013. | |
dc.relation.references | [10] B. Werners, and Y. Kondratenko, “Alternative Fuzzy Approaches for Efficiently Solving the Capacitated Vehicle Routing Problem in Conditions of Uncertain Demands,” Complex Systems: Solutions and Challenges in Economics, Management and Engineering, C. BergerVachon et al. (Eds.), Studies in Systems, Decision and Control, vol. 125, Berlin, Heidelberg: Springer, 2018, pp. 521-543. DOI: https://doi.org/10.1007/978-3-319-69989-9_31 | |
dc.relation.references | [11] J. M. Merigo, A. M. Gil-Lafuente, and R. R. Yager, “An overview of fuzzy research with bibliometric indicators,” Applied Soft Computing, no. 27, pp. 420-433, 2015. | |
dc.relation.references | [12] D. E. Tamir, N. D. Rishe, A. Kandel, (Eds), Fifty Years of Fuzzy Logic and its Applications. Studies in Fuzziness and Soft Computing, vol. 326, Cham-Heidelberg-New Yorl-Dordrecht-London, Springer International Publishing Switzerland, 2015. | |
dc.relation.references | [13] Lodwick, W.A., Kacprzhyk, J. (Eds): Fuzzy Optimization. Studies in Fuzziness and Soft Computing 254, Springer-Verlag, Berlin, Heidelberg, 2010. | |
dc.relation.references | [14] A. Kaufmann, and M. Gupta, Introduction to Fuzzy Arithmetic: Theory and Applications. Van Nostrand Reinhold Company, New York, 1985. | |
dc.relation.references | [15] Y. Kondratenko, and V. Kondratenko, “Soft Computing Algorithm for Arithmetic Multiplication of Fuzzy Sets Based on Universal Analytic Models,” In: Information and Communication Technologies in Education, Research, and Industrial Application. Communications in Computer and Information Science, vol. 469, Ermolayev, V. et al. (Eds): ICTERI’2014, Springer International Publishing, 2014, pp. 49–77. DOI: 10.1007/978-3-319-13206-8_3 | |
dc.relation.references | [16] A. Piegat, Fuzzy Modeling and Control. Springer, Heidelberg, 2001. | |
dc.relation.references | [17] L. E. S. Pereira, and V. M. da Costa, "Interval analysis applied to the maximum loading point of electric power systems considering load data uncertainties," International Journal of Electrical Power & Energy Systems, vol. 54, pp. 334, 2014. | |
dc.relation.references | [18] M. Hanss, Applied Fuzzy Arithmetics: An Introduction with Engineering Applications. Springer, Berlin, Heidelberg, NewYork, 2005. | |
dc.relation.references | [19] M. Solesvik, Y. Kondratenko,, G. Kondratenko, et al., “Fuzzy decision support systems in marine practice,” IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, pp. 1-6, 9-12 July 2017. DOI: 10.1109/FUZZ-IEEE.2017.8015471 | |
dc.relation.references | [20] P. Toth, D. Vigo, (Eds), The vehicle routing problem. SIAM, Philadelphia, 2002 | |
dc.relation.references | [21] D. Teodorovic, and G. Pavkovich, “The fuzzy set theory approach to the vehicle routing problem when demand at nodes is uncertain,” Fuzzy Sets and Systems, vol. 82, pp. 307-317, 1996 | |
dc.relation.references | [22] A. M. Gil-Lafuente, Fuzzy Logic in Financial Analysis. Studies in Fuzziness and Soft Computing, vol. 175, Springer, Berlin, 2005. | |
dc.relation.references | [23] Y. Bodyansky, O. Vynokurova, I. Pliss, and P. Mulesa, “Multilayer Wavelet-Neuro-Fuzzy Systems in Dynamic Data Mining Tasks,” In: Soft Computing: Developments, Methods and Applications, Alan Casey (Ed), Series: Computer Science, technology and applications, Nova Science Publishers, Hauppauge, NY, 2016, pp. 69-146. | |
dc.relation.references | [24] M. Hanss, “Fuzzy Arithmetic for Uncertainty Analysis,” In: Seising R., Trillas E., Moraga C., Termini S. (Eds), On Fuzziness. Studies in Fuzziness and Soft Computing, vol 298. Springer, Berlin, Heidelberg, 2013, pp, 235-240. DOI https://doi.org/10.1007/978-3-642-35641-4_36 | |
dc.relation.references | [25] S. Gao, and Z. Zhang, “Multiplication Operation on Fuzzy Numbers,” Journal of Software, vol. 4(4), pp. 331-338, JUNE 2009. http://ojs.academypublisher.com/index.php/jsw/article/download/0404331338/1061. | |
dc.relation.references | [26] A. Klimke, “An efficient implementation of the transformation method of fuzzy arithmetic,” 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003, pp. 468-473, 2003. doi: 10.1109/NAFIPS.2003.1226830 | |
dc.relation.references | [27] Y. P. Kondratenko, and N. Y. Kondratenko, “Reduced library of the soft computing analytic models for arithmetic operations with asymmetrical fuzzy numbers,” In: Soft Computing: Developments, Methods and Applications, Alan Casey (Ed), Series: Computer Science, technology and applications, Nova Science Publishers, Hauppauge, NY, 2016, pp. 1-38. | |
dc.relation.references | [28] Y. P. Kondratenko, and N. Y. Kondratenko, “Synthesis of Analytic Models for Subtraction of Fuzzy Numbers with Various Membership Function’s Shapes,” In: Gil-Lafuente A. et al. (Eds), Applied Mathematics and Computational Intelligence. FIM 2015. AISC, vol 730. Springer, Cham, 2018, pp.87-100, DOI https://doi.org/10.1007/978-3-319-75792-6_8 | |
dc.relation.references | [29] M. Pasieka, N. Grzesik, and K. Kuźma, “Simulation modeling of fuzzy logic controller for aircraft engines,” International Journal of Computing, vol. 16(1), pp. 27-33, 2017. Retrieved from http://computingonline.net/computing/article/view/868 | |
dc.relation.references | [30] Y. P. Kondratenko, O. V. Kozlov, O. S. Gerasin, and Y. M. Zaporozhets, “Synthesis and research of neuro-fuzzy observer of clamping force for mobile robot automatic control system,” IEEE First International Conference on Data Stream Mining and Processing (DSMP), pp.90-95, 2016, DOI: 10.1109/DSMP.2016.7583514 | |
dc.relation.references | [31] P. Bykovyy, Y. Pigovsky, A. Sachenko, and A. Banasik, “Fuzzy inference system for vulnerability risk estimation of perimeter security,” 5th IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS'2009, pp. 380-384, 2009. DOI 10.1109/IDAACS.2009.5342956 | |
dc.relation.references | [32] Y. Bodyansky, O. Vynokurova, I. Pliss, and D. Peleshko, “Hybrid Adaptive Systems of Computational Intelligence and Their On-line Learning for Green IT in Energy Management Tasks,” In: Green IT Engineering: Concepts, Models, Complex Systems Architectures, Studies in Systems, Decision and Control, V. Kharchenko et al. (Eds.), Vol. 74. Berlin, Heidelberg: Springer International Publishing, 2017, pp. 229-244. DOI: 10.1007/978-3-319-44162-7_12 | |
dc.relation.references | [33] M. Hanss, “An Approach to Inverse Fuzzy Arithmetic,” 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003, pp. 474-479, 2003. doi: 10.1109/NAFIPS.2003.1226831 | |
dc.relation.references | [34] L. Stefanini, L. Sorini, and M. L. Guerra, “Fuzzy Numbers and Fuzzy Arithmetic,” In: Handbook of Granular Computing, W. Pedrycz, A. Skowron, V. Kreinovich (Eds.), John Wiley and Sons, 2008, pp. 249-284. | |
dc.relation.references | [35] P. Grzegorzewski, “On the Interval Approximation of Fuzzy Numbers,” In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (Eds.): Advances in Computational Intelligence, IPMU 2012. Communications in Computer and Information Science, vol 299. Springer, Berlin, Heidelberg, 2012, pp. 59-68. DOI https://doi.org/10.1007/978-3-642-31718-7_7 | |
dc.relation.references | [36] M. L. Guerra, and L. Stefanini, “Approximate fuzzy arithmetic operations using monotonic interpolations,” Fuzzy Sets and Systems, vol. 150, iss. 1, pp. 40-55, 2005. | |
dc.relation.references | [37] L. Stefanini, “A generalization of Hukuhara difference and division for interval and fuzzy arithmetic,” Fuzzy Sets and Systems, vol. 161, iss. 11, pp. 1564-1584, 2010. | |
dc.relation.references | [38] L. Coroianu, “Necessary and sufficient conditions for the equality of the interactive and non-interactive sums of two fuzzy numbers,” Fuzzy Sets and Systems, vol. 283, pp. 40-55, 2016. | |
dc.relation.references | [39] S. N. Shahbazova, “Application of Fuzzy Sets for Control of Student Knowledge,” An International Journal Applied and Computational Mathematics 10, no. 1, pp. 195-208, 2011. | |
dc.relation.references | [40] O. Chertov, and D.Tavrov, “Memetic algorithm for solving the task of providing group anonymity,” In: Jamshidi M., Kreinovich V., Kacprzyk J. (Eds), Advance Trends in Soft Computing. Studies in Fuzziness and Soft Computing, vol. 312. Springer, Cham, 2014, pp. 281-292. DOI: https://doi.org/10.1007/978-3-319-03674-8_27 | |
dc.relation.references | [41] M. Z. Solesvik, and S. Encheva, “Partner selection for interfirm collaboration in ship design,” Industrial Management & Data Systems, 110(5), pp. 701-717, 2010. | |
dc.relation.references | [42] M. Solesvik, “Partner selection in green innovation projects,” In: Berger-Vachon C., et al. (Eds.), Complex Systems: Solutions and Challenges in Economics, Management and Engineering, Studies in Systems, Decision and Control, vol. 125, Springer, Cham 2018,.pp. 471-480. | |
dc.relation.references | [43] A. N. Trunov, “An adequacy criterion in evaluating the effectiveness of a model design process,” Eastern-European Journal of Enterprise Technologies 1, vol. 4 (73), pp. 36-41, 2015. | |
dc.relation.references | [44] A. V. Palagin, and V. N. Opanasenko, “Reconfigurable Computing Technology,” J. Cybernetics and Systems Analysis, vol. 43(5), pp. 675-686, 2007. | |
dc.relation.references | [45] J. Drozd, and A. Drozd, “Models, methods and means as resources for solving challenges in co-design and testing of computer systems and their components,” 9th Intern. Conf. on Digital Technologies 2013. Zhilina, Slovak Republic, pp. 225-230, 29-31 May, 2013. | |
dc.relation.references | [46] Y. P. Kondratenko, S. B. Encheva, and E. V. Sidenko, “Synthesis of Inelligent Decision Support Systems for Transport Logistic,” 6th IEEE Intern. Conf. on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Prague, Czech Republic, vol. 2, pp. 642-646, Sept. 15-17, 2011. DOI: 10.1109/IDAACS.2011.6072847 | |
dc.relation.references | [47] C. C. Ragin, Redesigning Social Inquiry: Fuzzy Sets and Beyond. The University of Chicago Press, Chicago, London, 2008. | |
dc.relation.references | [48] A. P. Rotshtein, “Fuzzy-algorithmic reliability analysis of complex systems,” Cybern. Syst. Anal., vol. 47 (6), pp. 919-931, 2011. DOI https://doi.org/10.1007/s10559-011-9371-x | |
dc.relation.references | [49] O. Pomorova, O. Savenko, S. Lysenko, and A. Kryshchuk, “MultiAgent Based Approach for Botnet Detection in a Corporate Area Network Using Fuzzy Logic,” In: Kwiecien, A., Gaj, P., Stera, P. (eds.) 20th Conference on Computer Networks, CN 2013, Lwówek ‘Slaski, Poland. Communications in Computer and Information Science, vol. 370, pp. 146-156. Springer-Verlag Berlin Heidelberg, 2013. | |
dc.relation.references | [50] D. Dubois, “An application of fuzzy arithmetic to the optimization of industrial machining processes,” Mathematical Modelling, vol. 9, no. 6, pp. 461-475, 1987. | |
dc.relation.referencesen | [1] D. Simon, "Design and rule base reduction of a fuzzy filter for the estimation of motor currents," International Journal of Approximate Reasoning, 25, pp. 145-167, 2000. | |
dc.relation.referencesen | [2] Y. P. Kondratenko, and E. Y. M. Al Zubi, "The Optimisation Approach for Increasing Efficiency of Digital Fuzzy Controllers,’ 20th Int. DAAAM Symp. "Intelligent Manufacturing and Automation", Published by DAAAM International, Vienna, Austria, pp. 1589-1591, 2009. | |
dc.relation.referencesen | [3] S. Encheva, Y. Kondratenko, M. Z. Solesvik, S. Tumin, "Decision Support Systems in Logistics," AIP Conference Proc. 1060, 254-256, 2008, https://doi.org/10.1063/1.3037065 | |
dc.relation.referencesen | [4] Y. P. Kondratenko, N. Y .Kondratenko, "Soft Computing Analytic Models for Increasing Efficiency of Fuzzy Information Processing in Decision Support Systems," Chapter in book: Decision Making: Processes, Behavioral Influences and Role in Business Management, R. Hudson (Ed.), Nova Science Publishers, New York, 2015, pp. 41-78. | |
dc.relation.referencesen | [5] J. Kacprzyk, S. Zadrozny, and G. De Tré, "Fuzziness in database management systems: Half a century of developments and future prospects," Fuzzy Sets and Systems vol, 281, pp. 300-307, 2015, https://doi.org/10.1016/j.fss.2015.06.011 | |
dc.relation.referencesen | [6] J Gil-Aluja,. Investment in Uncertainty. Kluwer Academic Publishers, Dordrecht, Boston, London, 1999. | |
dc.relation.referencesen | [7] L. A. Zadeh, "Fuzzy Sets," Information & Control, 8, pp. 338-353, 1965. | |
dc.relation.referencesen | [8] R.Yager, and D. Filev, Essential of Fuzzy Modeling and Control. Wiley, New York, 1994. | |
dc.relation.referencesen | [9] M. Jamshidi, V. Kreinovitch, J. Kacprzyk, (Eds), Advance Trends in Soft Computing. Proceedings of WCSC 2013, San Antonio, Texas, USA, STUDFUZZ 312, Springer, 2013. | |
dc.relation.referencesen | [10] B. Werners, and Y. Kondratenko, "Alternative Fuzzy Approaches for Efficiently Solving the Capacitated Vehicle Routing Problem in Conditions of Uncertain Demands," Complex Systems: Solutions and Challenges in Economics, Management and Engineering, C. BergerVachon et al. (Eds.), Studies in Systems, Decision and Control, vol. 125, Berlin, Heidelberg: Springer, 2018, pp. 521-543. DOI: https://doi.org/10.1007/978-3-319-69989-9_31 | |
dc.relation.referencesen | [11] J. M. Merigo, A. M. Gil-Lafuente, and R. R. Yager, "An overview of fuzzy research with bibliometric indicators," Applied Soft Computing, no. 27, pp. 420-433, 2015. | |
dc.relation.referencesen | [12] D. E. Tamir, N. D. Rishe, A. Kandel, (Eds), Fifty Years of Fuzzy Logic and its Applications. Studies in Fuzziness and Soft Computing, vol. 326, Cham-Heidelberg-New Yorl-Dordrecht-London, Springer International Publishing Switzerland, 2015. | |
dc.relation.referencesen | [13] Lodwick, W.A., Kacprzhyk, J. (Eds): Fuzzy Optimization. Studies in Fuzziness and Soft Computing 254, Springer-Verlag, Berlin, Heidelberg, 2010. | |
dc.relation.referencesen | [14] A. Kaufmann, and M. Gupta, Introduction to Fuzzy Arithmetic: Theory and Applications. Van Nostrand Reinhold Company, New York, 1985. | |
dc.relation.referencesen | [15] Y. Kondratenko, and V. Kondratenko, "Soft Computing Algorithm for Arithmetic Multiplication of Fuzzy Sets Based on Universal Analytic Models," In: Information and Communication Technologies in Education, Research, and Industrial Application. Communications in Computer and Information Science, vol. 469, Ermolayev, V. et al. (Eds): ICTERI’2014, Springer International Publishing, 2014, pp. 49–77. DOI: 10.1007/978-3-319-13206-8_3 | |
dc.relation.referencesen | [16] A. Piegat, Fuzzy Modeling and Control. Springer, Heidelberg, 2001. | |
dc.relation.referencesen | [17] L. E. S. Pereira, and V. M. da Costa, "Interval analysis applied to the maximum loading point of electric power systems considering load data uncertainties," International Journal of Electrical Power & Energy Systems, vol. 54, pp. 334, 2014. | |
dc.relation.referencesen | [18] M. Hanss, Applied Fuzzy Arithmetics: An Introduction with Engineering Applications. Springer, Berlin, Heidelberg, NewYork, 2005. | |
dc.relation.referencesen | [19] M. Solesvik, Y. Kondratenko,, G. Kondratenko, et al., "Fuzzy decision support systems in marine practice," IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, pp. 1-6, 9-12 July 2017. DOI: 10.1109/FUZZ-IEEE.2017.8015471 | |
dc.relation.referencesen | [20] P. Toth, D. Vigo, (Eds), The vehicle routing problem. SIAM, Philadelphia, 2002 | |
dc.relation.referencesen | [21] D. Teodorovic, and G. Pavkovich, "The fuzzy set theory approach to the vehicle routing problem when demand at nodes is uncertain," Fuzzy Sets and Systems, vol. 82, pp. 307-317, 1996 | |
dc.relation.referencesen | [22] A. M. Gil-Lafuente, Fuzzy Logic in Financial Analysis. Studies in Fuzziness and Soft Computing, vol. 175, Springer, Berlin, 2005. | |
dc.relation.referencesen | [23] Y. Bodyansky, O. Vynokurova, I. Pliss, and P. Mulesa, "Multilayer Wavelet-Neuro-Fuzzy Systems in Dynamic Data Mining Tasks," In: Soft Computing: Developments, Methods and Applications, Alan Casey (Ed), Series: Computer Science, technology and applications, Nova Science Publishers, Hauppauge, NY, 2016, pp. 69-146. | |
dc.relation.referencesen | [24] M. Hanss, "Fuzzy Arithmetic for Uncertainty Analysis," In: Seising R., Trillas E., Moraga C., Termini S. (Eds), On Fuzziness. Studies in Fuzziness and Soft Computing, vol 298. Springer, Berlin, Heidelberg, 2013, pp, 235-240. DOI https://doi.org/10.1007/978-3-642-35641-4_36 | |
dc.relation.referencesen | [25] S. Gao, and Z. Zhang, "Multiplication Operation on Fuzzy Numbers," Journal of Software, vol. 4(4), pp. 331-338, JUNE 2009. http://ojs.academypublisher.com/index.php/jsw/article/download/0404331338/1061. | |
dc.relation.referencesen | [26] A. Klimke, "An efficient implementation of the transformation method of fuzzy arithmetic," 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003, pp. 468-473, 2003. doi: 10.1109/NAFIPS.2003.1226830 | |
dc.relation.referencesen | [27] Y. P. Kondratenko, and N. Y. Kondratenko, "Reduced library of the soft computing analytic models for arithmetic operations with asymmetrical fuzzy numbers," In: Soft Computing: Developments, Methods and Applications, Alan Casey (Ed), Series: Computer Science, technology and applications, Nova Science Publishers, Hauppauge, NY, 2016, pp. 1-38. | |
dc.relation.referencesen | [28] Y. P. Kondratenko, and N. Y. Kondratenko, "Synthesis of Analytic Models for Subtraction of Fuzzy Numbers with Various Membership Function’s Shapes," In: Gil-Lafuente A. et al. (Eds), Applied Mathematics and Computational Intelligence. FIM 2015. AISC, vol 730. Springer, Cham, 2018, pp.87-100, DOI https://doi.org/10.1007/978-3-319-75792-6_8 | |
dc.relation.referencesen | [29] M. Pasieka, N. Grzesik, and K. Kuźma, "Simulation modeling of fuzzy logic controller for aircraft engines," International Journal of Computing, vol. 16(1), pp. 27-33, 2017. Retrieved from http://computingonline.net/computing/article/view/868 | |
dc.relation.referencesen | [30] Y. P. Kondratenko, O. V. Kozlov, O. S. Gerasin, and Y. M. Zaporozhets, "Synthesis and research of neuro-fuzzy observer of clamping force for mobile robot automatic control system," IEEE First International Conference on Data Stream Mining and Processing (DSMP), pp.90-95, 2016, DOI: 10.1109/DSMP.2016.7583514 | |
dc.relation.referencesen | [31] P. Bykovyy, Y. Pigovsky, A. Sachenko, and A. Banasik, "Fuzzy inference system for vulnerability risk estimation of perimeter security," 5th IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS'2009, pp. 380-384, 2009. DOI 10.1109/IDAACS.2009.5342956 | |
dc.relation.referencesen | [32] Y. Bodyansky, O. Vynokurova, I. Pliss, and D. Peleshko, "Hybrid Adaptive Systems of Computational Intelligence and Their On-line Learning for Green IT in Energy Management Tasks," In: Green IT Engineering: Concepts, Models, Complex Systems Architectures, Studies in Systems, Decision and Control, V. Kharchenko et al. (Eds.), Vol. 74. Berlin, Heidelberg: Springer International Publishing, 2017, pp. 229-244. DOI: 10.1007/978-3-319-44162-7_12 | |
dc.relation.referencesen | [33] M. Hanss, "An Approach to Inverse Fuzzy Arithmetic," 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003, pp. 474-479, 2003. doi: 10.1109/NAFIPS.2003.1226831 | |
dc.relation.referencesen | [34] L. Stefanini, L. Sorini, and M. L. Guerra, "Fuzzy Numbers and Fuzzy Arithmetic," In: Handbook of Granular Computing, W. Pedrycz, A. Skowron, V. Kreinovich (Eds.), John Wiley and Sons, 2008, pp. 249-284. | |
dc.relation.referencesen | [35] P. Grzegorzewski, "On the Interval Approximation of Fuzzy Numbers," In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (Eds.): Advances in Computational Intelligence, IPMU 2012. Communications in Computer and Information Science, vol 299. Springer, Berlin, Heidelberg, 2012, pp. 59-68. DOI https://doi.org/10.1007/978-3-642-31718-7_7 | |
dc.relation.referencesen | [36] M. L. Guerra, and L. Stefanini, "Approximate fuzzy arithmetic operations using monotonic interpolations," Fuzzy Sets and Systems, vol. 150, iss. 1, pp. 40-55, 2005. | |
dc.relation.referencesen | [37] L. Stefanini, "A generalization of Hukuhara difference and division for interval and fuzzy arithmetic," Fuzzy Sets and Systems, vol. 161, iss. 11, pp. 1564-1584, 2010. | |
dc.relation.referencesen | [38] L. Coroianu, "Necessary and sufficient conditions for the equality of the interactive and non-interactive sums of two fuzzy numbers," Fuzzy Sets and Systems, vol. 283, pp. 40-55, 2016. | |
dc.relation.referencesen | [39] S. N. Shahbazova, "Application of Fuzzy Sets for Control of Student Knowledge," An International Journal Applied and Computational Mathematics 10, no. 1, pp. 195-208, 2011. | |
dc.relation.referencesen | [40] O. Chertov, and D.Tavrov, "Memetic algorithm for solving the task of providing group anonymity," In: Jamshidi M., Kreinovich V., Kacprzyk J. (Eds), Advance Trends in Soft Computing. Studies in Fuzziness and Soft Computing, vol. 312. Springer, Cham, 2014, pp. 281-292. DOI: https://doi.org/10.1007/978-3-319-03674-8_27 | |
dc.relation.referencesen | [41] M. Z. Solesvik, and S. Encheva, "Partner selection for interfirm collaboration in ship design," Industrial Management & Data Systems, 110(5), pp. 701-717, 2010. | |
dc.relation.referencesen | [42] M. Solesvik, "Partner selection in green innovation projects," In: Berger-Vachon C., et al. (Eds.), Complex Systems: Solutions and Challenges in Economics, Management and Engineering, Studies in Systems, Decision and Control, vol. 125, Springer, Cham 2018,.pp. 471-480. | |
dc.relation.referencesen | [43] A. N. Trunov, "An adequacy criterion in evaluating the effectiveness of a model design process," Eastern-European Journal of Enterprise Technologies 1, vol. 4 (73), pp. 36-41, 2015. | |
dc.relation.referencesen | [44] A. V. Palagin, and V. N. Opanasenko, "Reconfigurable Computing Technology," J. Cybernetics and Systems Analysis, vol. 43(5), pp. 675-686, 2007. | |
dc.relation.referencesen | [45] J. Drozd, and A. Drozd, "Models, methods and means as resources for solving challenges in co-design and testing of computer systems and their components," 9th Intern. Conf. on Digital Technologies 2013. Zhilina, Slovak Republic, pp. 225-230, 29-31 May, 2013. | |
dc.relation.referencesen | [46] Y. P. Kondratenko, S. B. Encheva, and E. V. Sidenko, "Synthesis of Inelligent Decision Support Systems for Transport Logistic," 6th IEEE Intern. Conf. on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Prague, Czech Republic, vol. 2, pp. 642-646, Sept. 15-17, 2011. DOI: 10.1109/IDAACS.2011.6072847 | |
dc.relation.referencesen | [47] C. C. Ragin, Redesigning Social Inquiry: Fuzzy Sets and Beyond. The University of Chicago Press, Chicago, London, 2008. | |
dc.relation.referencesen | [48] A. P. Rotshtein, "Fuzzy-algorithmic reliability analysis of complex systems," Cybern. Syst. Anal., vol. 47 (6), pp. 919-931, 2011. DOI https://doi.org/10.1007/s10559-011-9371-x | |
dc.relation.referencesen | [49] O. Pomorova, O. Savenko, S. Lysenko, and A. Kryshchuk, "MultiAgent Based Approach for Botnet Detection in a Corporate Area Network Using Fuzzy Logic," In: Kwiecien, A., Gaj, P., Stera, P. (eds.) 20th Conference on Computer Networks, CN 2013, Lwówek ‘Slaski, Poland. Communications in Computer and Information Science, vol. 370, pp. 146-156. Springer-Verlag Berlin Heidelberg, 2013. | |
dc.relation.referencesen | [50] D. Dubois, "An application of fuzzy arithmetic to the optimization of industrial machining processes," Mathematical Modelling, vol. 9, no. 6, pp. 461-475, 1987. | |
dc.citation.conference | IEEE second international conference "Data stream mining and processing" | |
dc.citation.spage | 38 | |
dc.citation.epage | 43 | |
dc.coverage.placename | Львів | |
Appears in Collections: | Data stream mining and processing : proceedings of the IEEE second international conference
|