DC Field | Value | Language |
dc.contributor.author | Dumin, Oleksandr | |
dc.contributor.author | Shyrokorad, Dmytro | |
dc.contributor.author | Pochanin, Gennadiy | |
dc.contributor.author | Plakhtii, Vadym | |
dc.contributor.author | Prishchenko, Oleksandr | |
dc.coverage.temporal | 21-25 August 2018, Lviv | |
dc.date.accessioned | 2020-06-19T12:06:00Z | - |
dc.date.available | 2020-06-19T12:06:00Z | - |
dc.date.created | 2018-02-28 | |
dc.date.issued | 2018-02-28 | |
dc.identifier.citation | Subsurface Object Identification by Artificial Neural Networks and Impulse Radiolocation / Oleksandr Dumin, Dmytro Shyrokorad, Gennadiy Pochanin, Vadym Plakhtii, Oleksandr Prishchenko // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 434–437. — (Hybrid Systems of Computational Intelligence). | |
dc.identifier.isbn | © Національний університет „Львівська політехніка“, 2018 | |
dc.identifier.isbn | © Національний університет „Львівська політехніка“, 2018 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/52540 | - |
dc.description.abstract | The problem of identification of objects under
ground surface is solved by the application of irradiation of the
surface by short impulse electromagnetic waves and the use of
artificial neural networks (ANN) for the analysis of reflected
field characteristics. As input data for ANN the normalized
amplitudes of electrical component of the field in determined
points of observation in equidistant moments of time are used.
As an example of the object for the identification, the metal
tube under surface of a ground is considered. The plane
electromagnetic wave having Gaussian time dependence is used
as an incident field. The influence of a number of hidden layers
of ANN on precision of the recognition is investigated. | |
dc.format.extent | 434-437 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Data stream mining and processing : proceedings of the IEEE second international conference, 2018 | |
dc.subject | artificial neural network | |
dc.subject | impulse electromagnetic wave | |
dc.subject | subsurface radar | |
dc.subject | object recognition | |
dc.title | Subsurface Object Identification by Artificial Neural Networks and Impulse Radiolocation | |
dc.type | Conference Abstract | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2018 | |
dc.contributor.affiliation | V. N. Karazin Kharkiv National University | |
dc.contributor.affiliation | A. Ya. Usikov Institute for Radiophysics and Electronics of NAS of Ukraine | |
dc.contributor.affiliation | Zaporizhzhja National Technical University | |
dc.format.pages | 4 | |
dc.identifier.citationen | Subsurface Object Identification by Artificial Neural Networks and Impulse Radiolocation / Oleksandr Dumin, Dmytro Shyrokorad, Gennadiy Pochanin, Vadym Plakhtii, Oleksandr Prishchenko // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 434–437. — (Hybrid Systems of Computational Intelligence). | |
dc.relation.references | [1] A. S. Turk, K. A. Hocaoglu, and A. A. Vertiy, Subsurface Sensing, Ho-boken: Wiley, 2011. | |
dc.relation.references | [2] J. D. Taylor, Ultrawideband radar: applications and design. Boca Raton, London, NewYork: CRC Press, 2012. | |
dc.relation.references | [3] H. F. Harmuth, R. N. Boules, and M. G. M. Hussain, Electromagnetic signals: reflection, focusing, distortion, and their practical applications. NewYork: Kluwer Academic, Plenum Publishers, 1999. | |
dc.relation.references | [4] I. Immoreev, S. Samkov, and Teh-HoTao, “Short-Distance UltraWideband Radars,” IEEE Aerospaceand Electronic Systems Magazine, vol. 20, no. 6, pp. 9–14, 2005. | |
dc.relation.references | [5] D. J. Daniels, Ground penetrating radar, 2nd ed. London: IEEE, 2004. | |
dc.relation.references | [6] J. C. Cook, “Proposed monocycle-pulse very high frequency radar for airborne ice and snow measurement,” Trans. AIEE Commun. Electron., no. 79, pp. 588–594, 1960. | |
dc.relation.references | [7] H. Harmuth, Nonsinusoidal waves for radar and radiocommunications. New York: Academic Press, 1981. | |
dc.relation.references | [8] G. Pochanin, S. Masalov, I. Pochanina, L. Capineri, P. Falorni, and T. Bechtel, “Modern Trends in Development and Application of the UWB Radar Systems,” 8th International Conference on Ultrawideband and Ultrashort Impulse Signals, Odessa, Ukraine, pp. 7–11, 5-11 September 2016, | |
dc.relation.references | [9] O. O. Drobakhin, A. V. Doronin, and V. V. Grigor’ev, “3-probe microwave measuring instrument of vibration of mechanical objects with non-plane surface,” 7th Intern. Conf. on Antenna Theory and Techniques, Lviv, Ukraine, pp. 277–279, 2009. | |
dc.relation.references | [10] S. Alexin, O. Drobakhin, and V. Tkachenko, “Reconstruction of permittivity profile for stratified dielectric material: Gel’fand-Levitan and Newton-Kantorovich methods,” XII Int. Conf. on Math. Meth. in Electrom. Theory (MMET), Odesa, Ukraine, pp. 141–143, 2008. | |
dc.relation.references | [11] C. E. Baum, “Direct Construction of a Ksi-Pulse from Natural Frequencies and the Evaluation of the Late-Time Residuals,” Interaction Note 519, May 1996, pp. 349-360, in G.Heyman et al (eds), Ultra-Wideband, Short-Pulse Electromagnetics 4, Kluwer Academic/Plenum Publishers, 1999. | |
dc.relation.references | [12] M. V. Andreev, and O. O. Drobakhin, “Feature of Prony’s Method Application for Natural Frequencies Estimation from the Frequency Response,” 8th International Conference on Ultrawideband and Ultrashort Impulse Signals, Odessa, Ukraine, pp. 18-20, 5-11 September 2016. | |
dc.relation.references | [13] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex,” Journal of Physiology, London, vol. 160, pp. 106–154, 1962. | |
dc.relation.references | [14] D. Hebb, Organization of behaviour. New York, J. Wiley, 1949. | |
dc.relation.references | [15] S. Haykin, Neural Networks, 2nd ed. New Jersey: Prentice-Hall, 1999. | |
dc.relation.references | [16] R. Callan, The essence of neural networks. New York : Prentice Hall Europe, 1999. | |
dc.relation.references | [17] O. Drobakhin, and A. Doronin, “Estimation of thickness of subsurface air layer by neuron network technology application to reflected microwave signal,” XII Int. Conf. on MMET, Odesa, Ukraine, pp. 150-152, 2008. | |
dc.relation.references | [18] O. O. Drobakhin, and A. V. Doronin, “Neural network application for dielectric structure parameter determination by multifrequency methods,” Third International Conference of Ultrawideband and ultrashort impulse signals, Sevastopol, Ukraine, рр. 358–360, 2006. | |
dc.relation.references | [19] L. A. Varyanitsa-Roshchupkina, and G. P. Pochanin, “Video Pulse Electromagnetic Wave Diffraction on Subsurface Objects,” Telecommunications and Radio Engineering, vol. 66, no. 5, pp. 391-414, 2007. | |
dc.relation.references | [20] D. Shyrokorad, O. Dumin, and O. Dumina, “Time domain analysis of reflected impulse fields by artificial neural network,” IV Conf. on UWBUSIS, Sevastopol’, Ukraine, pp. 124-126, 2008. | |
dc.relation.references | [21] O. Dumin, O. Dumina, and D. Shyrokorad, “Time domain analysis of fields reflected from model of human body surface using artificial neural network,” in Proc. EuCAP, Berlin, pp. 235-238, 2009. | |
dc.relation.references | [22] D. Shyrokorad, O. Dumin, O. Dumina, V. Katrich, and V. Chebotarev “Approximating properties of artificial neural network in time domain for the analysis of electromagnetic fields reflected from model of human body surface,” Proc. MSMW, Kharkiv, Ukraine, pp. 1-3, 2010. | |
dc.relation.references | [23] D. Shyrokorad, O. Dumin, O. Dumina, and V. Katrich, “Analysis of transient fields reflected from model of human body surface using convolutional neural network,” Proc. MMET, Kyiv, pp. 1-4, 2010. | |
dc.relation.references | [24] O. Dumin, S. Khmara, and D. Shyrokorad, “Artificial neural networks in time domain electromagnetics,” Proc. of 11th International Conference on Antenna Theory and Techniques (ICATT–2017), Kyiv, Ukraine, pp. 118-121, 2017. | |
dc.relation.references | [25] G. P. Pochanin, V. P. Ruban, P. V. Kholod, O. A. Shuba, I. Ye. Pochanina, A. G. Batrakova, S. N. Urdzik, D. O. Batrakov, and D. V. Golovin, “Advances in ground penetrating radars for road surveying,” Ultrawideband and Ultrashort Impulse Signals, Kharkiv, Ukraine, pp. 13-18, 15-19 September 2014. | |
dc.relation.references | [26] A. Taflove, and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. Boston, London: Artech House, 2005. | |
dc.relation.references | [27] V. A. Katrich., A. N. Dumin, and O. A. Dumina, “Radiation of transient fields from the open end of rectangular waveguide,” IV International Conf. on Antenna Theory and Techniques (ICATT–2003), Sevastopol, Ukraine, pp. 583–586, 2003. | |
dc.relation.referencesen | [1] A. S. Turk, K. A. Hocaoglu, and A. A. Vertiy, Subsurface Sensing, Ho-boken: Wiley, 2011. | |
dc.relation.referencesen | [2] J. D. Taylor, Ultrawideband radar: applications and design. Boca Raton, London, NewYork: CRC Press, 2012. | |
dc.relation.referencesen | [3] H. F. Harmuth, R. N. Boules, and M. G. M. Hussain, Electromagnetic signals: reflection, focusing, distortion, and their practical applications. NewYork: Kluwer Academic, Plenum Publishers, 1999. | |
dc.relation.referencesen | [4] I. Immoreev, S. Samkov, and Teh-HoTao, "Short-Distance UltraWideband Radars," IEEE Aerospaceand Electronic Systems Magazine, vol. 20, no. 6, pp. 9–14, 2005. | |
dc.relation.referencesen | [5] D. J. Daniels, Ground penetrating radar, 2nd ed. London: IEEE, 2004. | |
dc.relation.referencesen | [6] J. C. Cook, "Proposed monocycle-pulse very high frequency radar for airborne ice and snow measurement," Trans. AIEE Commun. Electron., no. 79, pp. 588–594, 1960. | |
dc.relation.referencesen | [7] H. Harmuth, Nonsinusoidal waves for radar and radiocommunications. New York: Academic Press, 1981. | |
dc.relation.referencesen | [8] G. Pochanin, S. Masalov, I. Pochanina, L. Capineri, P. Falorni, and T. Bechtel, "Modern Trends in Development and Application of the UWB Radar Systems," 8th International Conference on Ultrawideband and Ultrashort Impulse Signals, Odessa, Ukraine, pp. 7–11, 5-11 September 2016, | |
dc.relation.referencesen | [9] O. O. Drobakhin, A. V. Doronin, and V. V. Grigor’ev, "3-probe microwave measuring instrument of vibration of mechanical objects with non-plane surface," 7th Intern. Conf. on Antenna Theory and Techniques, Lviv, Ukraine, pp. 277–279, 2009. | |
dc.relation.referencesen | [10] S. Alexin, O. Drobakhin, and V. Tkachenko, "Reconstruction of permittivity profile for stratified dielectric material: Gel’fand-Levitan and Newton-Kantorovich methods," XII Int. Conf. on Math. Meth. in Electrom. Theory (MMET), Odesa, Ukraine, pp. 141–143, 2008. | |
dc.relation.referencesen | [11] C. E. Baum, "Direct Construction of a Ksi-Pulse from Natural Frequencies and the Evaluation of the Late-Time Residuals," Interaction Note 519, May 1996, pp. 349-360, in G.Heyman et al (eds), Ultra-Wideband, Short-Pulse Electromagnetics 4, Kluwer Academic/Plenum Publishers, 1999. | |
dc.relation.referencesen | [12] M. V. Andreev, and O. O. Drobakhin, "Feature of Prony’s Method Application for Natural Frequencies Estimation from the Frequency Response," 8th International Conference on Ultrawideband and Ultrashort Impulse Signals, Odessa, Ukraine, pp. 18-20, 5-11 September 2016. | |
dc.relation.referencesen | [13] D. H. Hubel and T. N. Wiesel, "Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex," Journal of Physiology, London, vol. 160, pp. 106–154, 1962. | |
dc.relation.referencesen | [14] D. Hebb, Organization of behaviour. New York, J. Wiley, 1949. | |
dc.relation.referencesen | [15] S. Haykin, Neural Networks, 2nd ed. New Jersey: Prentice-Hall, 1999. | |
dc.relation.referencesen | [16] R. Callan, The essence of neural networks. New York : Prentice Hall Europe, 1999. | |
dc.relation.referencesen | [17] O. Drobakhin, and A. Doronin, "Estimation of thickness of subsurface air layer by neuron network technology application to reflected microwave signal," XII Int. Conf. on MMET, Odesa, Ukraine, pp. 150-152, 2008. | |
dc.relation.referencesen | [18] O. O. Drobakhin, and A. V. Doronin, "Neural network application for dielectric structure parameter determination by multifrequency methods," Third International Conference of Ultrawideband and ultrashort impulse signals, Sevastopol, Ukraine, rr. 358–360, 2006. | |
dc.relation.referencesen | [19] L. A. Varyanitsa-Roshchupkina, and G. P. Pochanin, "Video Pulse Electromagnetic Wave Diffraction on Subsurface Objects," Telecommunications and Radio Engineering, vol. 66, no. 5, pp. 391-414, 2007. | |
dc.relation.referencesen | [20] D. Shyrokorad, O. Dumin, and O. Dumina, "Time domain analysis of reflected impulse fields by artificial neural network," IV Conf. on UWBUSIS, Sevastopol’, Ukraine, pp. 124-126, 2008. | |
dc.relation.referencesen | [21] O. Dumin, O. Dumina, and D. Shyrokorad, "Time domain analysis of fields reflected from model of human body surface using artificial neural network," in Proc. EuCAP, Berlin, pp. 235-238, 2009. | |
dc.relation.referencesen | [22] D. Shyrokorad, O. Dumin, O. Dumina, V. Katrich, and V. Chebotarev "Approximating properties of artificial neural network in time domain for the analysis of electromagnetic fields reflected from model of human body surface," Proc. MSMW, Kharkiv, Ukraine, pp. 1-3, 2010. | |
dc.relation.referencesen | [23] D. Shyrokorad, O. Dumin, O. Dumina, and V. Katrich, "Analysis of transient fields reflected from model of human body surface using convolutional neural network," Proc. MMET, Kyiv, pp. 1-4, 2010. | |
dc.relation.referencesen | [24] O. Dumin, S. Khmara, and D. Shyrokorad, "Artificial neural networks in time domain electromagnetics," Proc. of 11th International Conference on Antenna Theory and Techniques (ICATT–2017), Kyiv, Ukraine, pp. 118-121, 2017. | |
dc.relation.referencesen | [25] G. P. Pochanin, V. P. Ruban, P. V. Kholod, O. A. Shuba, I. Ye. Pochanina, A. G. Batrakova, S. N. Urdzik, D. O. Batrakov, and D. V. Golovin, "Advances in ground penetrating radars for road surveying," Ultrawideband and Ultrashort Impulse Signals, Kharkiv, Ukraine, pp. 13-18, 15-19 September 2014. | |
dc.relation.referencesen | [26] A. Taflove, and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. Boston, London: Artech House, 2005. | |
dc.relation.referencesen | [27] V. A. Katrich., A. N. Dumin, and O. A. Dumina, "Radiation of transient fields from the open end of rectangular waveguide," IV International Conf. on Antenna Theory and Techniques (ICATT–2003), Sevastopol, Ukraine, pp. 583–586, 2003. | |
dc.citation.conference | IEEE second international conference "Data stream mining and processing" | |
dc.citation.spage | 434 | |
dc.citation.epage | 437 | |
dc.coverage.placename | Львів | |
Appears in Collections: | Data stream mining and processing : proceedings of the IEEE second international conference
|