Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52540
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDumin, Oleksandr
dc.contributor.authorShyrokorad, Dmytro
dc.contributor.authorPochanin, Gennadiy
dc.contributor.authorPlakhtii, Vadym
dc.contributor.authorPrishchenko, Oleksandr
dc.coverage.temporal21-25 August 2018, Lviv
dc.date.accessioned2020-06-19T12:06:00Z-
dc.date.available2020-06-19T12:06:00Z-
dc.date.created2018-02-28
dc.date.issued2018-02-28
dc.identifier.citationSubsurface Object Identification by Artificial Neural Networks and Impulse Radiolocation / Oleksandr Dumin, Dmytro Shyrokorad, Gennadiy Pochanin, Vadym Plakhtii, Oleksandr Prishchenko // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 434–437. — (Hybrid Systems of Computational Intelligence).
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52540-
dc.description.abstractThe problem of identification of objects under ground surface is solved by the application of irradiation of the surface by short impulse electromagnetic waves and the use of artificial neural networks (ANN) for the analysis of reflected field characteristics. As input data for ANN the normalized amplitudes of electrical component of the field in determined points of observation in equidistant moments of time are used. As an example of the object for the identification, the metal tube under surface of a ground is considered. The plane electromagnetic wave having Gaussian time dependence is used as an incident field. The influence of a number of hidden layers of ANN on precision of the recognition is investigated.
dc.format.extent434-437
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofData stream mining and processing : proceedings of the IEEE second international conference, 2018
dc.subjectartificial neural network
dc.subjectimpulse electromagnetic wave
dc.subjectsubsurface radar
dc.subjectobject recognition
dc.titleSubsurface Object Identification by Artificial Neural Networks and Impulse Radiolocation
dc.typeConference Abstract
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.contributor.affiliationV. N. Karazin Kharkiv National University
dc.contributor.affiliationA. Ya. Usikov Institute for Radiophysics and Electronics of NAS of Ukraine
dc.contributor.affiliationZaporizhzhja National Technical University
dc.format.pages4
dc.identifier.citationenSubsurface Object Identification by Artificial Neural Networks and Impulse Radiolocation / Oleksandr Dumin, Dmytro Shyrokorad, Gennadiy Pochanin, Vadym Plakhtii, Oleksandr Prishchenko // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 434–437. — (Hybrid Systems of Computational Intelligence).
dc.relation.references[1] A. S. Turk, K. A. Hocaoglu, and A. A. Vertiy, Subsurface Sensing, Ho-boken: Wiley, 2011.
dc.relation.references[2] J. D. Taylor, Ultrawideband radar: applications and design. Boca Raton, London, NewYork: CRC Press, 2012.
dc.relation.references[3] H. F. Harmuth, R. N. Boules, and M. G. M. Hussain, Electromagnetic signals: reflection, focusing, distortion, and their practical applications. NewYork: Kluwer Academic, Plenum Publishers, 1999.
dc.relation.references[4] I. Immoreev, S. Samkov, and Teh-HoTao, “Short-Distance UltraWideband Radars,” IEEE Aerospaceand Electronic Systems Magazine, vol. 20, no. 6, pp. 9–14, 2005.
dc.relation.references[5] D. J. Daniels, Ground penetrating radar, 2nd ed. London: IEEE, 2004.
dc.relation.references[6] J. C. Cook, “Proposed monocycle-pulse very high frequency radar for airborne ice and snow measurement,” Trans. AIEE Commun. Electron., no. 79, pp. 588–594, 1960.
dc.relation.references[7] H. Harmuth, Nonsinusoidal waves for radar and radiocommunications. New York: Academic Press, 1981.
dc.relation.references[8] G. Pochanin, S. Masalov, I. Pochanina, L. Capineri, P. Falorni, and T. Bechtel, “Modern Trends in Development and Application of the UWB Radar Systems,” 8th International Conference on Ultrawideband and Ultrashort Impulse Signals, Odessa, Ukraine, pp. 7–11, 5-11 September 2016,
dc.relation.references[9] O. O. Drobakhin, A. V. Doronin, and V. V. Grigor’ev, “3-probe microwave measuring instrument of vibration of mechanical objects with non-plane surface,” 7th Intern. Conf. on Antenna Theory and Techniques, Lviv, Ukraine, pp. 277–279, 2009.
dc.relation.references[10] S. Alexin, O. Drobakhin, and V. Tkachenko, “Reconstruction of permittivity profile for stratified dielectric material: Gel’fand-Levitan and Newton-Kantorovich methods,” XII Int. Conf. on Math. Meth. in Electrom. Theory (MMET), Odesa, Ukraine, pp. 141–143, 2008.
dc.relation.references[11] C. E. Baum, “Direct Construction of a Ksi-Pulse from Natural Frequencies and the Evaluation of the Late-Time Residuals,” Interaction Note 519, May 1996, pp. 349-360, in G.Heyman et al (eds), Ultra-Wideband, Short-Pulse Electromagnetics 4, Kluwer Academic/Plenum Publishers, 1999.
dc.relation.references[12] M. V. Andreev, and O. O. Drobakhin, “Feature of Prony’s Method Application for Natural Frequencies Estimation from the Frequency Response,” 8th International Conference on Ultrawideband and Ultrashort Impulse Signals, Odessa, Ukraine, pp. 18-20, 5-11 September 2016.
dc.relation.references[13] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex,” Journal of Physiology, London, vol. 160, pp. 106–154, 1962.
dc.relation.references[14] D. Hebb, Organization of behaviour. New York, J. Wiley, 1949.
dc.relation.references[15] S. Haykin, Neural Networks, 2nd ed. New Jersey: Prentice-Hall, 1999.
dc.relation.references[16] R. Callan, The essence of neural networks. New York : Prentice Hall Europe, 1999.
dc.relation.references[17] O. Drobakhin, and A. Doronin, “Estimation of thickness of subsurface air layer by neuron network technology application to reflected microwave signal,” XII Int. Conf. on MMET, Odesa, Ukraine, pp. 150-152, 2008.
dc.relation.references[18] O. O. Drobakhin, and A. V. Doronin, “Neural network application for dielectric structure parameter determination by multifrequency methods,” Third International Conference of Ultrawideband and ultrashort impulse signals, Sevastopol, Ukraine, рр. 358–360, 2006.
dc.relation.references[19] L. A. Varyanitsa-Roshchupkina, and G. P. Pochanin, “Video Pulse Electromagnetic Wave Diffraction on Subsurface Objects,” Telecommunications and Radio Engineering, vol. 66, no. 5, pp. 391-414, 2007.
dc.relation.references[20] D. Shyrokorad, O. Dumin, and O. Dumina, “Time domain analysis of reflected impulse fields by artificial neural network,” IV Conf. on UWBUSIS, Sevastopol’, Ukraine, pp. 124-126, 2008.
dc.relation.references[21] O. Dumin, O. Dumina, and D. Shyrokorad, “Time domain analysis of fields reflected from model of human body surface using artificial neural network,” in Proc. EuCAP, Berlin, pp. 235-238, 2009.
dc.relation.references[22] D. Shyrokorad, O. Dumin, O. Dumina, V. Katrich, and V. Chebotarev “Approximating properties of artificial neural network in time domain for the analysis of electromagnetic fields reflected from model of human body surface,” Proc. MSMW, Kharkiv, Ukraine, pp. 1-3, 2010.
dc.relation.references[23] D. Shyrokorad, O. Dumin, O. Dumina, and V. Katrich, “Analysis of transient fields reflected from model of human body surface using convolutional neural network,” Proc. MMET, Kyiv, pp. 1-4, 2010.
dc.relation.references[24] O. Dumin, S. Khmara, and D. Shyrokorad, “Artificial neural networks in time domain electromagnetics,” Proc. of 11th International Conference on Antenna Theory and Techniques (ICATT–2017), Kyiv, Ukraine, pp. 118-121, 2017.
dc.relation.references[25] G. P. Pochanin, V. P. Ruban, P. V. Kholod, O. A. Shuba, I. Ye. Pochanina, A. G. Batrakova, S. N. Urdzik, D. O. Batrakov, and D. V. Golovin, “Advances in ground penetrating radars for road surveying,” Ultrawideband and Ultrashort Impulse Signals, Kharkiv, Ukraine, pp. 13-18, 15-19 September 2014.
dc.relation.references[26] A. Taflove, and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. Boston, London: Artech House, 2005.
dc.relation.references[27] V. A. Katrich., A. N. Dumin, and O. A. Dumina, “Radiation of transient fields from the open end of rectangular waveguide,” IV International Conf. on Antenna Theory and Techniques (ICATT–2003), Sevastopol, Ukraine, pp. 583–586, 2003.
dc.relation.referencesen[1] A. S. Turk, K. A. Hocaoglu, and A. A. Vertiy, Subsurface Sensing, Ho-boken: Wiley, 2011.
dc.relation.referencesen[2] J. D. Taylor, Ultrawideband radar: applications and design. Boca Raton, London, NewYork: CRC Press, 2012.
dc.relation.referencesen[3] H. F. Harmuth, R. N. Boules, and M. G. M. Hussain, Electromagnetic signals: reflection, focusing, distortion, and their practical applications. NewYork: Kluwer Academic, Plenum Publishers, 1999.
dc.relation.referencesen[4] I. Immoreev, S. Samkov, and Teh-HoTao, "Short-Distance UltraWideband Radars," IEEE Aerospaceand Electronic Systems Magazine, vol. 20, no. 6, pp. 9–14, 2005.
dc.relation.referencesen[5] D. J. Daniels, Ground penetrating radar, 2nd ed. London: IEEE, 2004.
dc.relation.referencesen[6] J. C. Cook, "Proposed monocycle-pulse very high frequency radar for airborne ice and snow measurement," Trans. AIEE Commun. Electron., no. 79, pp. 588–594, 1960.
dc.relation.referencesen[7] H. Harmuth, Nonsinusoidal waves for radar and radiocommunications. New York: Academic Press, 1981.
dc.relation.referencesen[8] G. Pochanin, S. Masalov, I. Pochanina, L. Capineri, P. Falorni, and T. Bechtel, "Modern Trends in Development and Application of the UWB Radar Systems," 8th International Conference on Ultrawideband and Ultrashort Impulse Signals, Odessa, Ukraine, pp. 7–11, 5-11 September 2016,
dc.relation.referencesen[9] O. O. Drobakhin, A. V. Doronin, and V. V. Grigor’ev, "3-probe microwave measuring instrument of vibration of mechanical objects with non-plane surface," 7th Intern. Conf. on Antenna Theory and Techniques, Lviv, Ukraine, pp. 277–279, 2009.
dc.relation.referencesen[10] S. Alexin, O. Drobakhin, and V. Tkachenko, "Reconstruction of permittivity profile for stratified dielectric material: Gel’fand-Levitan and Newton-Kantorovich methods," XII Int. Conf. on Math. Meth. in Electrom. Theory (MMET), Odesa, Ukraine, pp. 141–143, 2008.
dc.relation.referencesen[11] C. E. Baum, "Direct Construction of a Ksi-Pulse from Natural Frequencies and the Evaluation of the Late-Time Residuals," Interaction Note 519, May 1996, pp. 349-360, in G.Heyman et al (eds), Ultra-Wideband, Short-Pulse Electromagnetics 4, Kluwer Academic/Plenum Publishers, 1999.
dc.relation.referencesen[12] M. V. Andreev, and O. O. Drobakhin, "Feature of Prony’s Method Application for Natural Frequencies Estimation from the Frequency Response," 8th International Conference on Ultrawideband and Ultrashort Impulse Signals, Odessa, Ukraine, pp. 18-20, 5-11 September 2016.
dc.relation.referencesen[13] D. H. Hubel and T. N. Wiesel, "Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex," Journal of Physiology, London, vol. 160, pp. 106–154, 1962.
dc.relation.referencesen[14] D. Hebb, Organization of behaviour. New York, J. Wiley, 1949.
dc.relation.referencesen[15] S. Haykin, Neural Networks, 2nd ed. New Jersey: Prentice-Hall, 1999.
dc.relation.referencesen[16] R. Callan, The essence of neural networks. New York : Prentice Hall Europe, 1999.
dc.relation.referencesen[17] O. Drobakhin, and A. Doronin, "Estimation of thickness of subsurface air layer by neuron network technology application to reflected microwave signal," XII Int. Conf. on MMET, Odesa, Ukraine, pp. 150-152, 2008.
dc.relation.referencesen[18] O. O. Drobakhin, and A. V. Doronin, "Neural network application for dielectric structure parameter determination by multifrequency methods," Third International Conference of Ultrawideband and ultrashort impulse signals, Sevastopol, Ukraine, rr. 358–360, 2006.
dc.relation.referencesen[19] L. A. Varyanitsa-Roshchupkina, and G. P. Pochanin, "Video Pulse Electromagnetic Wave Diffraction on Subsurface Objects," Telecommunications and Radio Engineering, vol. 66, no. 5, pp. 391-414, 2007.
dc.relation.referencesen[20] D. Shyrokorad, O. Dumin, and O. Dumina, "Time domain analysis of reflected impulse fields by artificial neural network," IV Conf. on UWBUSIS, Sevastopol’, Ukraine, pp. 124-126, 2008.
dc.relation.referencesen[21] O. Dumin, O. Dumina, and D. Shyrokorad, "Time domain analysis of fields reflected from model of human body surface using artificial neural network," in Proc. EuCAP, Berlin, pp. 235-238, 2009.
dc.relation.referencesen[22] D. Shyrokorad, O. Dumin, O. Dumina, V. Katrich, and V. Chebotarev "Approximating properties of artificial neural network in time domain for the analysis of electromagnetic fields reflected from model of human body surface," Proc. MSMW, Kharkiv, Ukraine, pp. 1-3, 2010.
dc.relation.referencesen[23] D. Shyrokorad, O. Dumin, O. Dumina, and V. Katrich, "Analysis of transient fields reflected from model of human body surface using convolutional neural network," Proc. MMET, Kyiv, pp. 1-4, 2010.
dc.relation.referencesen[24] O. Dumin, S. Khmara, and D. Shyrokorad, "Artificial neural networks in time domain electromagnetics," Proc. of 11th International Conference on Antenna Theory and Techniques (ICATT–2017), Kyiv, Ukraine, pp. 118-121, 2017.
dc.relation.referencesen[25] G. P. Pochanin, V. P. Ruban, P. V. Kholod, O. A. Shuba, I. Ye. Pochanina, A. G. Batrakova, S. N. Urdzik, D. O. Batrakov, and D. V. Golovin, "Advances in ground penetrating radars for road surveying," Ultrawideband and Ultrashort Impulse Signals, Kharkiv, Ukraine, pp. 13-18, 15-19 September 2014.
dc.relation.referencesen[26] A. Taflove, and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. Boston, London: Artech House, 2005.
dc.relation.referencesen[27] V. A. Katrich., A. N. Dumin, and O. A. Dumina, "Radiation of transient fields from the open end of rectangular waveguide," IV International Conf. on Antenna Theory and Techniques (ICATT–2003), Sevastopol, Ukraine, pp. 583–586, 2003.
dc.citation.conferenceIEEE second international conference "Data stream mining and processing"
dc.citation.spage434
dc.citation.epage437
dc.coverage.placenameЛьвів
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Dumin_O-Subsurface_Object_Identification_434-437.pdf291.25 kBAdobe PDFView/Open
2018_Dumin_O-Subsurface_Object_Identification_434-437__COVER.png608.03 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.