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Abstract—The problem of identification of objects under 
ground surface is solved by the application of irradiation of the 
surface by short impulse electromagnetic waves and the use of 
artificial neural networks (ANN) for the analysis of reflected 
field characteristics. As input data for ANN the normalized 
amplitudes of electrical component of the field in determined 
points of observation in equidistant moments of time are used. 
As an example of the object for the identification, the metal 
tube under surface of a ground is considered. The plane 
electromagnetic wave having Gaussian time dependence is used 
as an incident field. The influence of a number of hidden layers 
of ANN on precision of the recognition is investigated.  
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I. INTRODUCTION 

The detection and recognition of objects localized in the 
complicated media as soils of different kinds are the actual 
subjects for a number of applications [1]. Another stage of 
the development of the area is the usage of the 
ultrawideband radars [2]. Owing to the very wide range of 
frequencies of a sensing electromagnetic wave spectrum [3], 
the radars provide significantly higher precision of a 
resolution and a depth of penetration in lossy media [4] in 
comparison with traditional ground penetrating radar (GPR) 
[5]. The idea of a GPR that radiates the electromagnetic 
wave without definite carrier frequency was proposed by 
Cook [6] 60 years ago, but the impetuous development of 
theory and technique of all components of the radar permits 
to obtain the predicted characteristics [7] of the impulse 
GPR in current time only [8]. 

Except the simplest formulation of the problem for a 
uniform medium of propagation with known parameters 
there are a number of tasks concerning the investigation of 
objects by limited set of sources of a reflected field [9] or 
the reconstruction of a dielectric profile of inhomogeneous 
media [10]. The problems require the application of 
complicated techniques especially for cases of 
mathematically incorrect statements. As for the pursuit of 
hidden objects of complex shapes there was proposed the 
approach based on concept of a presence of individual 
resonant frequencies for the object response on 

electromagnetic wave irradiation that can be used as their 
own footprints [11]. These frequencies were called “Natural 
Frequencies”. It was suggested that the objects form a 
response containing the natural frequencies under irradiation 
by an electromagnetic wave.  

The investigation of reflected wave for the object 
recognition needs the application of complicated 
mathematical methods [12] to compensate the lack of input 
data. It is interesting to use more convenient and quick 
methods of recognition, for example, the approach built 
upon principles of information processing realized in 
cortexes of animals [13]. The understanding of the 
mechanism of brain unit action [14] permitted to construct 
artificial neural networks [15] that possess multidimensional 
function approximation properties of ultimate power [16]. 
Namely the ANN characteristics are used to solve the 
problem of dielectric object parameter finding from analysis 
of reflected electromagnetic fields [17]. The application of 
ANN significantly simplifies the solving of dielectric 
parameter recognition task by multifrequency 
multidimensional backscattering problem solution [18]. As 
it was mentioned above, the utilization of impulse 
electromagnetic wave for irradiation must provide 
researches by a bigger size of information about objects 
under investigation physically [19]. Moreover, the 
application of electromagnetic fields with ultra-wideband 
spectrum expands the possibilities to receive in reflected 
wave components that corresponds to the natural 
frequencies of hidden objects [11]. So, the approach based 
on ANN was used for analysis of dielectric parameters of a 
layered medium that is a model of human body surface [20-
23]. There were studied and compared ANN of different 
structures. It was shown the stability of the parameter 
recognition in presence of noise of substantial level and 
measuring errors. The key hypothesis of the ANN actions 
was established on the prediction of self-invention of 
recognition method during training directly from time-
dependent signals instead of its Fourier Transform or other 
preprocessing techniques [24]. As for tasks of the parameter 
recognition, the works [20-24] are more close to the 
practical problem of remote road quality surveying, but the 
results obtained cannot satisfy the parameter precision 
needed and reached by analytical method based on Hilbert 
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transform [25]. The purpose of the work is to apply the same 
approach of direct time-domain signal processing for a 
subsurface object recognition, for example, described in [8] 
the problem of land mine finding.  

II. STATEMENT OF THE PROBLEM

The source of input signals is the amplitudes of the 
electrical component of electromagnetic field reflected from 
ground surface and underground objects. The normally 
incident plane electromagnetic wave having the Gaussian 
time dependence with duration 0.6 ns. The reflected field is 
measured at the height 250 mm under the ground surface 
that is the convenient height to arrange real receiving 
antenna system. The number of the points for the 
measurement is 15 with spatial step along the ground 
surface 100 mm. There are three models of dielectric 
characteristics of the ground material: homogeneous 
substance with permittivity ε =9 and conductance σ =0.005 
S/m; the same surrounding substance with trench of depth 
and width 600 mm filled with another matter having 
permittivity ε =12 or ε =6 and the same losses. Totally, it is 
considered six cases where the ground materials have no 
inclusions and have the inclusion in form of perfectly 
conducted tube with radius 100 mm buried into the depth 
300 mm and oriented perpendicularly to the line of field 
probes and in parallel to the trench walls. 

Each field probe transmit the signal to ANN in form of 
500 values of amplitudes of the electrical field obtained with 
time step 30 ps that is not very dense in comparison with 
used in [25]. So, input layer of ANN must contain 7500 
elements. The output layer consists of one neuron that 
shows the presence or the absence of tube. All neurons have 
the sigmoidal excitation function. One should solve the 
problem of diffraction of the impulse electromagnetic wave 
on the metal-dielectric structure in time domain, train the 
ANNs to recognize the presence of the tube for different 
number of hidden layers and different number of neurons in 
them.  

III. THE SOLUTION OF THE PROBLEM

The problem of impulse electromagnetic wave scattering 
is solved directly in time domain by numerical FDTD 
method [26]. The results of the simulation are presented in 
Fig. 1-3, where the normalized amplitudes of electrical field 
are shown for different points in space along OX axis (from 
-700 mm to 700 mm) and for different moments of time
(from 0 to 15 ns). The downward orientation of the time axis
is chosen for better representation of underground object
influence on amplitudes of reflected field and the object
location in space without taking into account
electromagnetic field slowdown in dielectric media. Fig. 1
describes the case of homogeneous substance with
permittivity ε =9 and conductance σ =0.005 S/m, Fig. 2
and Fig. 3 conform to the same substance with the trench
filled with other matter of permittivity ε =6 and ε =12
correspondingly. The pictures marked by the letter “a”
shows the cases without any scatterer under a ground,
whereas the letter “b” designates the cases with presence of
the metal tube.

All figures contain the lightest area of incident pulse 
appearing and the darkest region of field reflected from the 
ground surface and changed their polarity. Other domains 
include significantly weaker changes of field amplitudes 
caused by influences of metal surface and permittivity 
changes supplementary diminished by losses in the media. 
The reflection of the wave from metal tube generates typical 
hyperboloid-like shape caused by time delay in reaching the 
observation point shifted from normal to the surface [2]. 

a)

b)

Fig. 1. Time dependence of the normalized amplitudes of electrical field 
in different points along OX axis calculated for the case of homogeneous 
substance with permittivity ε =9 and conductance σ =0.005 S/m (a) and 
the same substance with the metal tube buried at the depth 300 mm (b). 

It is interesting to note that the case of trench filled with 
matter with smaller permittivity (Fig. 2) reminds the 
impulse field behavior in rectangular waveguide [27] 
whereas the field distribution for the case of bigger 
permittivity inside trench (Fig. 3) looks like the pattern for 
homogeneous ground (Fig. 1). Each of the six time-spatial 
distributions depicted in Fig. 1-3 forms the training set for 
our ANN. The purpose of the training is to get the zero level 
of the ANN output signal for sets presented in Fig. 1-3a and 
the unit level for sets pictured in Fig. 1-3b. The final result 
of the learning is checked on verification sets presented in 
Fig. 4, where the time-spatial distribution of the amplitude 
of electrical field of reflected wave is depicted for the cases 
of tube hidden under ground surface for shifted positions 
relatively to the case pictured in Fig. 1a in 20 mm 
downward (Fig. 4a), left-hand (Fig. 4b), and right-hand 
(Fig. 4c). Last two cases are equivalent of 20% error in 
positioning along OX axis, the first case corresponds to 
66 ps error in time, i.e. more than two time steps.  

The structures of ANN and results their check on the 
data corresponded the cases depicted in Fig. 4 are presented 
in Table 1. It is seen that the case #2 of ANN with two 
hidden layers governs the worst result for all verification 
tests whereas the biggest deflection is observed for the case 
#1. The best fit is supervised in case #4 that can be 
explained by the biggest informational capacity of the ANN 
that helps to successfully recognize the presence of the tube. 
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a)

b)

Fig. 2. Time dependence of the normalized amplitudes of electrical field 
in different points along OX axis calculated for the case of homogeneous 
substance with permittivity ε=9 and conductance σ=0.005 S/m with trench 
filled with the matter with permittivity ε =6 and the same σ =0.005 S/m (a) 
and for the same substances and geometry but with the metal tube buried at 
the depth 300 mm (b). 

It is interesting to illustrate the values of weight 
coefficients between layers for the best case #4 presented in 
Table I. The data are depicted in Fig. 5, where the numbers 
of interconnected neurons are shown on axes, and the 
brightness of the corresponding dots reflects the values of 
the weight coefficients 

a)

b)

Fig. 3. Time dependence of the normalized amplitudes of electrical field 
in different points along OX axis calculated for the case of homogeneous 
substance with permittivity ε=9 and conductance σ=0.005 S/m with trench 
filled with the matter with permittivity ε =12 and the same σ =0.005 S/m 
(a) and for the same substances and geometry but with the metal tube
buried at the depth 300 mm (b). 

Its magnitudes for third and fourth layers are displayed 
in Fig. 5a, for second and third layers are represented in Fig. 
5b, for first and second layers are imaged in Fig. 5c. It is 
seen that the values have chaotic character in Fig. 5a and 
Fig. 5b, but the picture in Fig. 5c shows definite periodicity 
that corresponds to similar algorithm of processing data 
from each of 15 probes found by ANN during training. 

a)

b)

c)
Fig. 4. Time dependence of the normalized amplitudes of electrical field 
in different points along OX axis calculated for the case of homogeneous 
substance with permittivity ε =9 and conductance σ =0.005 S/m with the 
buried metal tube as well as presented in Fig. 1b but for shifted position of 
tube in 20 mm downward (a), left-hand (b), and right-hand (c). 

IV. CONCLUSION

It is shown that ANN can effectively find objects whose 
presence have a distributed influence on data acquired by 
the impulse electromagnetic field irradiation of a ground. It 
is seen that a bigger number of hidden layers of ANN 
permits to improve the object recognition quality. The 
occurrence of errors and a low contrast of significant part of 
the training input data do not hamper the creation of 
successful methods of object recognition by ANN. The 
process of ANN training has created a necessary algorithm 
of signal processing and recognized the samples of the data 
from different probes blindly preferring the usage of similar 
manipulation with input data of different probes. 
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a)

b)

c)
Fig. 4. The values of weight coefficients between k and l neurons of 
third and fourth layers (a), j and k neurons of second and third layers (b), i 
and j neurons of first and second layers (c). 

TABLE I. ANN STRUCTURES AND RESULTS OF THEIR 
VERIFICATIONS 

ANN 
number 

ANN characteristics 

Structure, number of 
neurons in layers 

Output 
signal 

for case 
in 

Fig. 4a 

Output 
signal 

for case 
in 

Fig. 4b 

Output 
signal 

for case 
in 

Fig. 4c 
1 7500-100-50-25-1 0.9943 1.2001 1.3316

2. 7500-100-50-1 0.9809 0.9569 0.9493

3. 7500-200-100-50-1 1.0085 1.0227 0.9471

4. 7500-200-150-10-1 1.0065 1.0068 1.0099
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