Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52534
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKharchenko, Kostyantyn
dc.contributor.authorBeznosyk, Oleksandr
dc.contributor.authorRomanov, Valeriy
dc.coverage.temporal21-25 August 2018, Lviv
dc.date.accessioned2020-06-19T12:05:53Z-
dc.date.available2020-06-19T12:05:53Z-
dc.date.created2018-02-28
dc.date.issued2018-02-28
dc.identifier.citationKharchenko K. Implementation of Neural Networks with Help of a Data Flow Virtual Machine / Kostyantyn Kharchenko, Oleksandr Beznosyk, Valeriy Romanov // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 407–410. — (Hybrid Systems of Computational Intelligence).
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52534-
dc.description.abstractThe main goal of this paper is to show how a neural network can be implemented with help of the data flow management system at a virtual machine. As an example, the three-layer neural network realization has been investigated to solve a simple XOR function with two inputs and one output. For that purpose, a sigmoid command required to make a neuron activation function has been added into the data flow virtual machine. It is presented in the paper that neural networks can be described as data flows with help of the declarative approach on a base of the JSON format.
dc.format.extent407-410
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofData stream mining and processing : proceedings of the IEEE second international conference, 2018
dc.relation.urihttp://download.tensorflow.org/paper/whitepaper2015.pdf
dc.relation.urihttps://github.com/Theano
dc.relation.urihttps://mxnet.apache.org/
dc.relation.urihttps://www.microsoft.com/en-us/cognitive-toolkit/
dc.relation.urihttps://keras.io/
dc.relation.urihttps://github.com/torch/torch7
dc.relation.urihttp://torch.ch/
dc.relation.urihttp://caffe.berkeleyvision.org/
dc.subjectneural networks
dc.subjectdata flow virtual machine
dc.subjectJSON
dc.subjectactivation functions
dc.titleImplementation of Neural Networks with Help of a Data Flow Virtual Machine
dc.typeConference Abstract
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.contributor.affiliationNational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
dc.format.pages4
dc.identifier.citationenKharchenko K. Implementation of Neural Networks with Help of a Data Flow Virtual Machine / Kostyantyn Kharchenko, Oleksandr Beznosyk, Valeriy Romanov // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 407–410. — (Hybrid Systems of Computational Intelligence).
dc.relation.references[1] K. V. Kharchenko, “Extension of the LLVM virtual machine with parallel instructions to implement a message transfer system,” 2012 System analysis and information technology 14th Int. Conf., Kyiv, Ukraine, p. 302, 24 April 2012.
dc.relation.references[2] K. V. Kharchenko, “Dataflow control paradigm and dataflow graphic presentation in SOA,” East-European journal for advanced technologies, no. 3/9 (69), pp. 22-29, 2014.
dc.relation.references[3] K. V. Kharchenko, “An Architecture and Test Implementation of Data Flow Virtual Machine,” 2016 System analysis and information technology 18th Int. Conf., Kyiv, Ukraine, p. 268, 30 May – 2 June 2016.
dc.relation.references[4] K. Kharchenko, O. Beznosyk and V. Romanov, “A Set of Instructions for Data Flow Virtual Machine,” IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON 2017), Kyiv, Ukraine, pp. 931-934, 29 May – 2 June 2017.
dc.relation.references[5] B. Lu, B. L. Evans and D. V. Tosic, "Simulation and Synthesis of Artificial Neural Networks Using Dataflow Models in Ptolemy," 4th Seminar on Neural Network Applications in Electrical Engineering NEUREL-97, Belgrade, Serbia, pp. 84-89, Sep. 8-9, 1997.
dc.relation.references[6] M. Bacis, G. Natale, E. Del Sozzo and M. D. Santambrogio, “A pipelined and scalable dataflow implementation of convolutional neural networks on FPGA,” 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Lake Buena Vista, FL, pp. 90-97, 2017.
dc.relation.references[7] Y. H. Chen, J. Emer and V. Sze, "Using Dataflow to Optimize Energy Efficiency of Deep Neural Network Accelerators," in IEEE Micro, vol. 37, no. 3, pp. 12-21, 2017.
dc.relation.references[8] Jeffrey Dean et al. (2015, November 9). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems [Online]. Available: http://download.tensorflow.org/paper/whitepaper2015.pdf
dc.relation.references[9] Theano GitHub [Online]. Available: https://github.com/Theano
dc.relation.references[10] MXNet: A Scalable Deep Learning Framework [Online]. Available: https://mxnet.apache.org/
dc.relation.references[11] Microsoft Cognitive Toolkit [Online]. Available: https://www.microsoft.com/en-us/cognitive-toolkit/
dc.relation.references[12] Keras Documentation [Online]. Available: https://keras.io/
dc.relation.references[13] Torch GitHub [Online]. Available: https://github.com/torch/torch7
dc.relation.references[14] Torch. Scientific computing for LuaJIT [Online]. Available: http://torch.ch/
dc.relation.references[15] Caffee Deep Learning Framework [Online]. Available: http://caffe.berkeleyvision.org/
dc.relation.referencesen[1] K. V. Kharchenko, "Extension of the LLVM virtual machine with parallel instructions to implement a message transfer system," 2012 System analysis and information technology 14th Int. Conf., Kyiv, Ukraine, p. 302, 24 April 2012.
dc.relation.referencesen[2] K. V. Kharchenko, "Dataflow control paradigm and dataflow graphic presentation in SOA," East-European journal for advanced technologies, no. 3/9 (69), pp. 22-29, 2014.
dc.relation.referencesen[3] K. V. Kharchenko, "An Architecture and Test Implementation of Data Flow Virtual Machine," 2016 System analysis and information technology 18th Int. Conf., Kyiv, Ukraine, p. 268, 30 May – 2 June 2016.
dc.relation.referencesen[4] K. Kharchenko, O. Beznosyk and V. Romanov, "A Set of Instructions for Data Flow Virtual Machine," IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON 2017), Kyiv, Ukraine, pp. 931-934, 29 May – 2 June 2017.
dc.relation.referencesen[5] B. Lu, B. L. Evans and D. V. Tosic, "Simulation and Synthesis of Artificial Neural Networks Using Dataflow Models in Ptolemy," 4th Seminar on Neural Network Applications in Electrical Engineering NEUREL-97, Belgrade, Serbia, pp. 84-89, Sep. 8-9, 1997.
dc.relation.referencesen[6] M. Bacis, G. Natale, E. Del Sozzo and M. D. Santambrogio, "A pipelined and scalable dataflow implementation of convolutional neural networks on FPGA," 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Lake Buena Vista, FL, pp. 90-97, 2017.
dc.relation.referencesen[7] Y. H. Chen, J. Emer and V. Sze, "Using Dataflow to Optimize Energy Efficiency of Deep Neural Network Accelerators," in IEEE Micro, vol. 37, no. 3, pp. 12-21, 2017.
dc.relation.referencesen[8] Jeffrey Dean et al. (2015, November 9). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems [Online]. Available: http://download.tensorflow.org/paper/whitepaper2015.pdf
dc.relation.referencesen[9] Theano GitHub [Online]. Available: https://github.com/Theano
dc.relation.referencesen[10] MXNet: A Scalable Deep Learning Framework [Online]. Available: https://mxnet.apache.org/
dc.relation.referencesen[11] Microsoft Cognitive Toolkit [Online]. Available: https://www.microsoft.com/en-us/cognitive-toolkit/
dc.relation.referencesen[12] Keras Documentation [Online]. Available: https://keras.io/
dc.relation.referencesen[13] Torch GitHub [Online]. Available: https://github.com/torch/torch7
dc.relation.referencesen[14] Torch. Scientific computing for LuaJIT [Online]. Available: http://torch.ch/
dc.relation.referencesen[15] Caffee Deep Learning Framework [Online]. Available: http://caffe.berkeleyvision.org/
dc.citation.conferenceIEEE second international conference "Data stream mining and processing"
dc.citation.spage407
dc.citation.epage410
dc.coverage.placenameЛьвів
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Kharchenko_K-Implementation_of_Neural_407-410.pdf112.07 kBAdobe PDFView/Open
2018_Kharchenko_K-Implementation_of_Neural_407-410__COVER.png594.11 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.