
IEEE Second International Conference on Data Stream Mining & Processing
August 21-25, 2018, Lviv, Ukraine

978-1-5386-2874-4/18/$31.00 ©2018 IEEE 407

Implementation of Neural Networks
with Help of a Data Flow Virtual Machine

Kostyantyn Kharchenko
System Design Department

Institute for Applied System Analysis
National Technical University of

Ukraine “Igor Sikorsky Kyiv
Polytechnic Institute”

Kyiv, Ukraine
k.kharchenko@kpi.ua

Oleksandr Beznosyk
System Design Department

Institute for Applied System Analysis
National Technical University of

Ukraine “Igor Sikorsky Kyiv
Polytechnic Institute”

Kyiv, Ukraine
o.beznosyk@kpi.ua

Valery Romanov
System Design Department

Institute for Applied System Analysis
National Technical University of

Ukraine “Igor Sikorsky Kyiv
Polytechnic Institute”

Kyiv, Ukraine
v.romanov@kpi.ua

Abstract—The main goal of this paper is to show how a
neural network can be implemented with help of the data flow
management system at a virtual machine. As an example, the
three-layer neural network realization has been investigated to
solve a simple XOR function with two inputs and one output.
For that purpose, a sigmoid command required to make a
neuron activation function has been added into the data flow
virtual machine. It is presented in the paper that neural
networks can be described as data flows with help of the
declarative approach on a base of the JSON format.

Keywords—neural networks, data flow virtual machine,
JSON, activation functions

I. INTRODUCTION

Using virtual machines in computational systems is well-
known for years. Such an approach established itself well as
it supports compatibility at the bytecode level and its
productivity on various hardware platforms is often
comparable to the software development with native code
compilers.

In the same time, the data flow computations were
developing actively in contrast to the command flow ones.
Currently, data flow management systems are widespread in
the different areas.

In the previous papers [1, 2, 3, 4], some implementations
of the data flow virtual machine (DFVM) as well as a
concept of input data representation for a data flow system
were described. One of them is a JSON-based format for the
data flow virtual machine that is rather simple and effective.
So, at the moment a DVFM’s input file is a JSON file that is
easily understandable and self-descriptive.

Currently, it is possible to describe neural networks as
data flows [5, 6, 7]. The aim of the paper presented is to
create an example of the test neural network working at the
data flow virtual machine. At the same time, the neural
network input configuration is described by a static JSON
file in contrast to the widespread approach to describe neural
networks by means of the codes in Python, C++, Java etc.
programming languages.

The possibility and convenience to describe a neural
network in the declarative form at the level of neural
network’s separate signals is under investigation. The
problem of the description at the layer’s level will be
considered separately.

II. EXISTING SOLUTIONS

There are a lot of tools for neural network computations
such as, for example, TensorFlow [8], Theano [9],
MXNet [10], CNTK [11], Keras [12] (known as symbolic
frameworks), Torch [13, 14], Caffe [15] (imperative
frameworks).

TensorFlow is a platform-independent open source
software library for artificial intelligence and machine
learning developed by Google for internal use to build and
train neural networks for automatically finding and
classifying images and correlations, with a goal to achieve
the quality of human perception. It is currently used for
researches as well as the development of Google products
such as Speech Recognition, Gmail, Photos, Search, Maps.
The main API for working with the library is implemented
for Python while there are implementations for C++, Haskell,
Java and Go too. TensorFlow computations are represented
as stateful data flow graphs. Its name comes from so called
“tensors” – multidimensional data arrays, on which such
neural networks perform the operations. TensorFlow can run
on multiple central and graphic processors (with optional
CUDA and SYCL extensions for general-purpose computing
on graphics processing units). In 2015, it was released under
the open Apache 2.0 license.

Theano is a Python numerical computations library. It
deals with symbolically specified mathematical computations
and optimizes them to produce efficient low-level
realization. The calculations in Theano are expressed by the
NumPy syntax and compiled for efficient parallel processing
on conventional CPUs and GPUs. On September 28, 2017, it
was announced that work on the project was discontinued
after the release of 1.0, while the minimum support was
maintained for one year.

Apache MXNet is a modern open-source fast and
scalable deep learning framework with a compact and easy-
to-use machine learning API. It is used to train and deploy
deep neural networks, and it supports a flexible programming
model and multiple languages such as C++, Python, Perl,
Scala, Matlab, Wolfram, JavaScript, Go, R. MXNet includes
the Gluon interface, which makes it easy for developers to
get started with deep learning, for example, in the cloud or in
mobile applications. With just a few lines of Gluon code,
such features as linear regression, convolutional networks,
and recurring LSTMs for object and speech recognition,
recommendation, and personalization can be developed. The
MXNet library is portable. Also, it is scalable to multiple

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

408

graphic processors and computers. MXNet is supported by
major public cloud providers such as Amazon and Microsoft
as well as a number of world-famous companies and research
institutions.

Microsoft Cognitive Toolkit, formerly known as CNTK,
is a deep learning framework developed by Microsoft
Research. It describes neural networks as a series of
computational steps via a directed graph.

Keras is an open neural network library written in
Python. It is an add-on for the Deeplearning4j, TensorFlow
and Theano frameworks. It is capable of working on top of
them. It is aimed at operational work with deep learning
networks, while being designed to be compact, modular and
expandable. It was planned that Google will support Keras in
the main TensorFlow library, but Keras was designed as an
interface rather than an end-to-end machine learning system.
It represents a high-level, intuitive set of abstractions, which
makes the formation of neural networks easy, regardless of
the library of scientific computing used at the lower level.
This library contains numerous implementations of widely
used building blocks of neural networks, such as layers,
target and transfer functions, optimizers, and many tools for
simplifying the work with images and text.

Torch is an open library for the open source Lua
programming language. It provides a lot of algorithms for
deep machine learning and scientific computing. The kernel
is written in C, the application part is executed on LuaJIT,
also it supports parallelization of calculations by means of
CUDA and OpenMP.

Caffe is a system for deep learning developed by
Yangqing Jia as part of his doctoral work at the University of
California at Berkeley. Caffe is open source software
distributed under the BSD license. It is written in C++ and
supports the Python interface. Its name comes from the
reduction of “Convolution Architecture For Feature
Extraction”. Caffe first ported the MATLAB implementation
of fast convolutional neural networks (CNN) to C and C++.
Caffe includes numerous algorithms and deep-learning
architectures for classifying and clustering image data. CNN,
R-CNN (recurrent neural network), LSTM (long short-term
memory) and fully connected neural networks are supported.
With Caffe, the graphics processor-based acceleration can be
used with Nvidia's cuDNN. Caffe supports Python and
MATLAB programming environments. Yahoo has integrated
Caffe into Apache Spark to distribute deep learning.

Some of the systems mentioned operate with data flows
but all of them use an imperative form of the neural network
description and, thus, require using programming languages
to describe a neural network behavior. In the same time, the
approach proposed in this article allows describing a neural
network by means of the declarative JSON-like
constructions; it seems to be more convenient and simple
than using conventional programming languages. Each of the
approaches mentioned has its own advantages and
disadvantages but the main idea is that the declarative
approach would allow working with neural networks for
users without knowledge of the programming languages.

III. DATA FLOW VIRTUAL MACHINE FOR NEURAL
NETWORK COMPUTATIONS

Let’s consider an example often used for an acquaintance
almost with any system or library for neural networks.

Let’s assume that neural network’s coefficients to solve a
test XOR example are already known (the problem of neural
network training to select coefficients required, for instance,
by a gradient descent method is not currently under
investigation).

At the current implementation of a neural network, one
neuron can accept only two input signals. The XOR function
to be implemented on the neural network is presented in
Table 1.

TABLE I. XOR FUNCTION

A 0 0 1 1

B 0 1 0 1

Z 0 1 1 0

A. Implementation of Sigmoid Function in DFVM
Let’s implement a sigmoid function

xe
y

−+
=

1

1

in DFVM. The following DFVM JSON file shows an
example of using sigmoid; if the input value is 1.0 then the
expected output is 0.731059:
{
"comment": "sigmoid y = 1 / (1 + exp(-x))",
"inputs": [{"name":"x", "value":1.0},

{"name":"y", "value":0.0}],
"outputs": [{"name":"y", "assert":

[{"equal":0.731059}]}],
"nodes": [{"double":"x"}, {"double":"y"}],
"commands": [{"code":"sigmoid", "inputs":["x"],

"outputs":["y"]}]
}

This sigmoid function can be used as an activation one.

For a lot of tasks in neural networks, it is needed also to
use 0w value (bias). Let’s add it to the sigmoid function:

01

1
wxe

y
+−+

=

This will allow to simplify working with a neural
network and to avoid adding one more DFVM component to
implement addition (Fig. 1).

Fig. 1. DFVM implementation of sigmoid function with bias.

So, the DFVM sigmoid function takes two input
arguments x and 0w and looks as follows:

{
"comment": "sigmoid y = 1 / (1 + exp(-x+w0))",
"inputs": [{"name":"x", "value":1.0},

{"name":"w0", "value":1.0}
{"name":"y", "value":0.0}],

"outputs": [{"name":"y"}],

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

409

"nodes": [{"double":"x"},
{"double":"w0"}
{"double":"y"}],

"commands": [{"code":"sigmoid_bias",
"inputs":["x", “w0”],
"outputs":["y"]}]

}

B. Description of a Simple Neural Network with the Data
Flow Paradigm
The following data flow JSON file implements a simple

neural network in the data flow virtual machine. The first
input layer consists of two neurons, the second (hidden) layer
consists of two neurons, and the output layer consists of one
neuron (Fig. 2).

This DFVM JSON file represents an implementation of
neural network on data flow paradigm for XOR sample
shown in Fig. 3.

Each neuron has a ijw coefficient for multiplication of
the neuron’s input and passes a result to the sigmoid
activation

Fig. 2. Simple example of neural network for XOR function.

function. This neural network consists of two inputs input1,
input2 and 6 weight coefficients ijw . All these inputs are of
double type. This neural network consists of two layers, and

sigmoids are used as activation functions:
{
"comment": "neural network",
"inputs": [{"name":"input1", "value":1.0},

{"name":"input2", "value":1.0},
{"name":"w11", "value":1.0},
...
{"name":"w32", "value":1.0}],

"outputs": [{"name":"output"}],
"nodes": [{"double":"input1"},

{"double":"input2"},
{"double":"w11"},
...
{"double":"output"}],

"commands": [{"code":"mul", "inputs":["input1",
"w11"], "outputs":["o11"] },
{"code":"mul", "inputs":["input2",
"w21"], "outputs":["o21"] },
{"code":"mul", "inputs":["input1",
"w12"], "outputs":["o12"] },
{"code":"mul", "inputs":["input2",
"w22"], "outputs":["o22"] },
{"code":"add", "inputs":["o11",
"o21"], "outputs":["s1"] },
{"code":"add", "inputs":["o12",
"o22"], "outputs":["s2"] },
{"code":"sigmoid", "inputs":["s1"],
"outputs":["o31"] },
{"code":"sigmoid", "inputs":["s2"],
"outputs":["o32"] },
{"code":"mul", "inputs":["o31",
"w31"], "outputs":["o41"] },
{"code":"mul", "inputs":["o32",
"w32"], "outputs":["o42"] },
{"code":"add", "inputs":["o41",
"o42"], "outputs":["s3"]},
{"code":"sigmoid", "inputs":["s3"],
"outputs":["output"]}]

}

IV. IMPLEMENTATION DETAILS AND OTHER TYPES OF
ACTIVATION FUNCTIONS IN DFVM

The existing data flow virtual machine did not require a
lot of modifications, except for adding new commands for
activation functions. A component diagram of DFVM is
presented in Fig. 4.

Fig. 3. Neural network on data flow paradigm.

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

410

Fig. 4. DFVM component diagram.

At the moment, there are the following activation
functions in DFVM:

• relu • softsign • sigmoid_bias

• softplus • sigmoid • tanh

In C++ code, an activation function implementation takes
place in the same way as for usual DFVM commands such as
add, sub, div, mul for a double type. The activation function
can take one or more input parameters and return one output
parameter. Entire C++ programming functional is available,
and the implementation procedure itself is not complex,
which makes it possible to add into DFVM new activation
functions if needed.

The implementation of sigmoid function in DFVM in
C++ is represented as follows:
BaseFlow* DoubleFlow::sigmoid()
{
 return new DoubleFlow(1.0/
 (1.0+exp(-this->value)));
}

where BaseFlow is a superclass of flow, DoubleFlow is a
class for double type, and this->value is an input value.
This method returns new instance of DoubleFlow.

DoubleFlow.h file looks as follows:
#pragma once
#include "BaseFlow.h"
#include "DFVMExceptions.h"
#include "IntegerFlow.h"
#include "StringFlow.h"
#include "BooleanFlow.h"
#include <iostream>

class DoubleFlow :public BaseFlow
{
public:
 explicit DoubleFlow(const double val);
 virtual ~DoubleFlow() {}
 void print() const override;
 BaseFlow::Type type() const override;
 ...
 BaseFlow* sigmoid() override;
private:
 double value;
};

V. RESEARCH RESULTS AND FUTURE INVESTIGATIONS

An advantage of the neural network description as data
flows at the virtual machine is that such an approach does not
require writing a program in any high-level language or such
object-oriented programming languages as C++ or Python. In
a case of the data flow virtual machine, the neural network
description is just presented in a declarative form while
calculations are being provided by a specialized virtual
machine written in C++.

In the next implementations of DFVM a gradient descent

method will be implemented to train neural networks using
data flow based description, which will allow training neural
networks in the same data flow virtual machine without
additional libraries.

A disadvantage of the approach mentioned is that it is
required to describe connections with each neuron in the
layers. However, if to provide support for matrices in the
virtual machine, then it would be possible to describe each
layer as a single entity in a JSON file, which will make it
possible to present complex large-scale neural networks in
some lines.

For high-dimensional neural networks, DFVM will
support an array data type for double and corresponding
description for appropriate operations, such as multiplication,
addition, etc. This will allow to describe connection of a data
flow with massive data and to lessen number of lines in a
JSON file. The next version of DFVM will be presented for
bigger examples of practical neural networks with
connection of layers as data flows and proper mathematical
training methods.

REFERENCES
[1] K. V. Kharchenko, “Extension of the LLVM virtual machine with

parallel instructions to implement a message transfer system,” 2012
System analysis and information technology 14th Int. Conf., Kyiv,
Ukraine, p. 302, 24 April 2012.

[2] K. V. Kharchenko, “Dataflow control paradigm and dataflow graphic
presentation in SOA,” East-European journal for advanced
technologies, no. 3/9 (69), pp. 22-29, 2014.

[3] K. V. Kharchenko, “An Architecture and Test Implementation of
Data Flow Virtual Machine,” 2016 System analysis and information
technology 18th Int. Conf., Kyiv, Ukraine, p. 268, 30 May – 2 June
2016.

[4] K. Kharchenko, O. Beznosyk and V. Romanov, “A Set of Instructions
for Data Flow Virtual Machine,” IEEE First Ukraine Conference on
Electrical and Computer Engineering (UKRCON 2017), Kyiv,
Ukraine, pp. 931-934, 29 May – 2 June 2017.

[5] B. Lu, B. L. Evans and D. V. Tosic, "Simulation and Synthesis of
Artificial Neural Networks Using Dataflow Models in Ptolemy," 4th
Seminar on Neural Network Applications in Electrical
Engineering NEUREL-97, Belgrade, Serbia, pp. 84-89, Sep. 8-9,
1997.

[6] M. Bacis, G. Natale, E. Del Sozzo and M. D. Santambrogio, “A
pipelined and scalable dataflow implementation of convolutional
neural networks on FPGA,” 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), Lake
Buena Vista, FL, pp. 90-97, 2017.

[7] Y. H. Chen, J. Emer and V. Sze, "Using Dataflow to Optimize Energy
Efficiency of Deep Neural Network Accelerators," in IEEE Micro,
vol. 37, no. 3, pp. 12-21, 2017.

[8] Jeffrey Dean et al. (2015, November 9). TensorFlow: Large-Scale
Machine Learning on Heterogeneous Distributed Systems [Online].
Available: http://download.tensorflow.org/paper/whitepaper2015.pdf

[9] Theano GitHub [Online]. Available: https://github.com/Theano
[10] MXNet: A Scalable Deep Learning Framework [Online]. Available:

https://mxnet.apache.org/
[11] Microsoft Cognitive Toolkit [Online]. Available:

https://www.microsoft.com/en-us/cognitive-toolkit/
[12] Keras Documentation [Online]. Available: https://keras.io/
[13] Torch GitHub [Online]. Available: https://github.com/torch/torch7
[14] Torch. Scientific computing for LuaJIT [Online]. Available:

http://torch.ch/
[15] Caffee Deep Learning Framework [Online]. Available:

http://caffe.berkeleyvision.org/

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

