Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52532
Title: A Method to Solve Uncertainty Problem for Big Data Sources
Authors: Berko, Andrii
Alieksieiev, Vladyslav
Affiliation: Lviv Polytechnic National University
Bibliographic description (Ukraine): Berko A. A Method to Solve Uncertainty Problem for Big Data Sources / Andrii Berko, Vladyslav Alieksieiev // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 32–37. — (Big Data & Data Science Using Intelligent Approaches).
Bibliographic description (International): Berko A. A Method to Solve Uncertainty Problem for Big Data Sources / Andrii Berko, Vladyslav Alieksieiev // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 32–37. — (Big Data & Data Science Using Intelligent Approaches).
Is part of: Data stream mining and processing : proceedings of the IEEE second international conference, 2018
Conference/Event: IEEE second international conference "Data stream mining and processing"
Issue Date: 28-Feb-2018
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Львів
Temporal Coverage: 21-25 August 2018, Lviv
Keywords: big data
data sources
data uncertainty
ontology
uncertainty elimination
Number of pages: 6
Page range: 32-37
Start page: 32
End page: 37
Abstract: Big Data analysis and processing is a popular tool for Artificial Intelligence and Data Science based solutions in various directions of human activity. It is of a great importance to ensure a reliability and a value of data source. One of the key problems is the inevitable existence of uncertainty in stored or missing values. Any uncertainty in a source causes its disadvantageous, complexity or inapplicability to use. That is why it is crucial to eliminate uncertainty or to lower uncertainty influence. Here in this research, we offer ontology-based method to solve an uncertainty problem for big data sources.
URI: https://ena.lpnu.ua/handle/ntb/52532
ISBN: © Національний університет „Львівська політехніка“, 2018
© Національний університет „Львівська політехніка“, 2018
Copyright owner: © Національний університет “Львівська політехніка”, 2018
References (Ukraine): [1] C. J. Date, Database in Depth: Relational Theory for Practitioners. O’Reilly, CA, 2005.
[2] K. Alieksieieva, and A. Peleshchyshyn, “Application of incomplete and inexact data for commercial web-project management,” Scientific announcements of Lviv Polytechnic National University, Lviv, Ukrane, no. 805, pp.345-353, 2014.
[3] N. Marz , and J. Warren, Big Data: Principles and best practices of scalable realtime data systems. Manning Publications, 2015.
[4] J. Chen, D. Dosyn, V. Lytvyn, and A. Sachenko, “Smart Data Integration by Goal Driven Ontology Learning. Advances in Big Data,” Advances in Intelligent Systems and Computing, Springer International Publishing AG, pp. 283-292, 2016.
[5] D. Losin, Big data analytics. Elsevier Inc., Waltham, MA, USA, 2014.
[6] V. Alieksieiev, and O. Gaiduchok “About the problem of data losses in real-time IoT based monitoring systems,” Mathematical Modeling, STUME, Sofia, BULGARIA, Year I, issue 3, pp. 121–122, 2017.
[7] V. Alieksieiev, G. Ivasyk, V. Pabyrivskyi, and N. Pabyrivska, “Big data aggregation algorithm for storing obsolete data,” Industry 4.0 – STUME, Sofia, BULGARIA, Year III, issue 1, pp.20–22, 2018.
References (International): [1] C. J. Date, Database in Depth: Relational Theory for Practitioners. O’Reilly, CA, 2005.
[2] K. Alieksieieva, and A. Peleshchyshyn, "Application of incomplete and inexact data for commercial web-project management," Scientific announcements of Lviv Polytechnic National University, Lviv, Ukrane, no. 805, pp.345-353, 2014.
[3] N. Marz , and J. Warren, Big Data: Principles and best practices of scalable realtime data systems. Manning Publications, 2015.
[4] J. Chen, D. Dosyn, V. Lytvyn, and A. Sachenko, "Smart Data Integration by Goal Driven Ontology Learning. Advances in Big Data," Advances in Intelligent Systems and Computing, Springer International Publishing AG, pp. 283-292, 2016.
[5] D. Losin, Big data analytics. Elsevier Inc., Waltham, MA, USA, 2014.
[6] V. Alieksieiev, and O. Gaiduchok "About the problem of data losses in real-time IoT based monitoring systems," Mathematical Modeling, STUME, Sofia, BULGARIA, Year I, issue 3, pp. 121–122, 2017.
[7] V. Alieksieiev, G. Ivasyk, V. Pabyrivskyi, and N. Pabyrivska, "Big data aggregation algorithm for storing obsolete data," Industry 4.0 – STUME, Sofia, BULGARIA, Year III, issue 1, pp.20–22, 2018.
Content type: Conference Abstract
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Berko_A-A_Method_to_Solve_Uncertainty_32-37.pdf168.84 kBAdobe PDFView/Open
2018_Berko_A-A_Method_to_Solve_Uncertainty_32-37__COVER.png569.24 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.