Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52532
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBerko, Andrii
dc.contributor.authorAlieksieiev, Vladyslav
dc.coverage.temporal21-25 August 2018, Lviv
dc.date.accessioned2020-06-19T12:05:51Z-
dc.date.available2020-06-19T12:05:51Z-
dc.date.created2018-02-28
dc.date.issued2018-02-28
dc.identifier.citationBerko A. A Method to Solve Uncertainty Problem for Big Data Sources / Andrii Berko, Vladyslav Alieksieiev // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 32–37. — (Big Data & Data Science Using Intelligent Approaches).
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52532-
dc.description.abstractBig Data analysis and processing is a popular tool for Artificial Intelligence and Data Science based solutions in various directions of human activity. It is of a great importance to ensure a reliability and a value of data source. One of the key problems is the inevitable existence of uncertainty in stored or missing values. Any uncertainty in a source causes its disadvantageous, complexity or inapplicability to use. That is why it is crucial to eliminate uncertainty or to lower uncertainty influence. Here in this research, we offer ontology-based method to solve an uncertainty problem for big data sources.
dc.format.extent32-37
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofData stream mining and processing : proceedings of the IEEE second international conference, 2018
dc.subjectbig data
dc.subjectdata sources
dc.subjectdata uncertainty
dc.subjectontology
dc.subjectuncertainty elimination
dc.titleA Method to Solve Uncertainty Problem for Big Data Sources
dc.typeConference Abstract
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages6
dc.identifier.citationenBerko A. A Method to Solve Uncertainty Problem for Big Data Sources / Andrii Berko, Vladyslav Alieksieiev // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 32–37. — (Big Data & Data Science Using Intelligent Approaches).
dc.relation.references[1] C. J. Date, Database in Depth: Relational Theory for Practitioners. O’Reilly, CA, 2005.
dc.relation.references[2] K. Alieksieieva, and A. Peleshchyshyn, “Application of incomplete and inexact data for commercial web-project management,” Scientific announcements of Lviv Polytechnic National University, Lviv, Ukrane, no. 805, pp.345-353, 2014.
dc.relation.references[3] N. Marz , and J. Warren, Big Data: Principles and best practices of scalable realtime data systems. Manning Publications, 2015.
dc.relation.references[4] J. Chen, D. Dosyn, V. Lytvyn, and A. Sachenko, “Smart Data Integration by Goal Driven Ontology Learning. Advances in Big Data,” Advances in Intelligent Systems and Computing, Springer International Publishing AG, pp. 283-292, 2016.
dc.relation.references[5] D. Losin, Big data analytics. Elsevier Inc., Waltham, MA, USA, 2014.
dc.relation.references[6] V. Alieksieiev, and O. Gaiduchok “About the problem of data losses in real-time IoT based monitoring systems,” Mathematical Modeling, STUME, Sofia, BULGARIA, Year I, issue 3, pp. 121–122, 2017.
dc.relation.references[7] V. Alieksieiev, G. Ivasyk, V. Pabyrivskyi, and N. Pabyrivska, “Big data aggregation algorithm for storing obsolete data,” Industry 4.0 – STUME, Sofia, BULGARIA, Year III, issue 1, pp.20–22, 2018.
dc.relation.referencesen[1] C. J. Date, Database in Depth: Relational Theory for Practitioners. O’Reilly, CA, 2005.
dc.relation.referencesen[2] K. Alieksieieva, and A. Peleshchyshyn, "Application of incomplete and inexact data for commercial web-project management," Scientific announcements of Lviv Polytechnic National University, Lviv, Ukrane, no. 805, pp.345-353, 2014.
dc.relation.referencesen[3] N. Marz , and J. Warren, Big Data: Principles and best practices of scalable realtime data systems. Manning Publications, 2015.
dc.relation.referencesen[4] J. Chen, D. Dosyn, V. Lytvyn, and A. Sachenko, "Smart Data Integration by Goal Driven Ontology Learning. Advances in Big Data," Advances in Intelligent Systems and Computing, Springer International Publishing AG, pp. 283-292, 2016.
dc.relation.referencesen[5] D. Losin, Big data analytics. Elsevier Inc., Waltham, MA, USA, 2014.
dc.relation.referencesen[6] V. Alieksieiev, and O. Gaiduchok "About the problem of data losses in real-time IoT based monitoring systems," Mathematical Modeling, STUME, Sofia, BULGARIA, Year I, issue 3, pp. 121–122, 2017.
dc.relation.referencesen[7] V. Alieksieiev, G. Ivasyk, V. Pabyrivskyi, and N. Pabyrivska, "Big data aggregation algorithm for storing obsolete data," Industry 4.0 – STUME, Sofia, BULGARIA, Year III, issue 1, pp.20–22, 2018.
dc.citation.conferenceIEEE second international conference "Data stream mining and processing"
dc.citation.spage32
dc.citation.epage37
dc.coverage.placenameЛьвів
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Berko_A-A_Method_to_Solve_Uncertainty_32-37.pdf168.84 kBAdobe PDFView/Open
2018_Berko_A-A_Method_to_Solve_Uncertainty_32-37__COVER.png569.24 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.