Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52524
Title: Inverse Problem for Two-Dimensional Heat Equation with an Unknown Source
Authors: Pabyrivska, Nelya
Pabyrivskyy, Viktor
Affiliation: Lviv Politechnic National University
Bibliographic description (Ukraine): Pabyrivska N. Inverse Problem for Two-Dimensional Heat Equation with an Unknown Source / Nelya Pabyrivska, Viktor Pabyrivskyy // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 361–363. — (Hybrid Systems of Computational Intelligence).
Bibliographic description (International): Pabyrivska N. Inverse Problem for Two-Dimensional Heat Equation with an Unknown Source / Nelya Pabyrivska, Viktor Pabyrivskyy // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 361–363. — (Hybrid Systems of Computational Intelligence).
Is part of: Data stream mining and processing : proceedings of the IEEE second international conference, 2018
Conference/Event: IEEE second international conference "Data stream mining and processing"
Issue Date: 28-Feb-2018
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Львів
Temporal Coverage: 21-25 August 2018, Lviv
Keywords: inverse problem
Green function
Volterra integral equations
unknown source
Number of pages: 3
Page range: 361-363
Start page: 361
End page: 363
Abstract: The paper establishes existence and unique conditions for an inverse problem with an unknown source. The unknown source is a polynom for two spatial variables with unknown coefficients depending on time.
URI: https://ena.lpnu.ua/handle/ntb/52524
ISBN: © Національний університет „Львівська політехніка“, 2018
© Національний університет „Львівська політехніка“, 2018
Copyright owner: © Національний університет “Львівська політехніка”, 2018
References (Ukraine): [1] E. Savateev, “The problem of identification of a coefficient in a parabolic equation,” Siberian Mathematical Journal. vol.36, no. 1. pp. 177-185, 1995.
[2] M. Ivanchov, “Inverse problem for the multidimensional heat equation with unknown source,” Matematychni Studii. no16, pp. 93-98, 2001.
[3] Dinh Nho Hào, Phan Xuan Thanh, D. Lesnic, and M. Ivanchov, “Determination of a source in the heat equation from integral observations,” Journal of Computational and Applied Mathematics, no. 264, pp. 82–98, 2014.
[4] M. S. Hussein, and D. Lesnic, “Simultaneous determination of timedependent coefficients and heat source,” International Journal for Computational Methods in Engineering Science and Mechanics, vol. 17, pp. 401-411, August 2016.
[5] N. Protsakh, “Inverse problem for weakly nonlinear ultraparabolic equation with three unknown functions of different arguments on the right side,” Ukrainian Mathematical Journal. vol. 66, no. 3, pp. 371-390, 2014.
[6] K. Kasemets, and J. Janno, “Reconstruction of a Source Term in a Parabolic Integro-Differential Equation from Final Data,” Mathematical Modelling and Analysis, vol. 16, no. 2, pp.199–219, 2011.
[7] M. Hussein, D. Lesnic, and M. Ivanchov, “Identification of a Heterogeneous Orthotropic Conductivity in a Rectangular Domain,” International Journal of Novel Ideas: Mathematics, S.l., vol. 1, pp. 1-11, apr. 2017.
[8] N. Pabyrivska, and V. Vlasov, “The determination of major coefficient factor in parabolic equation,” Mathematical methods and physico-mechanical fields, vol.49, no. 3, pp.18-25, 2006.
[9] N. Pabyrivska, and O. Varenyk, “The determination of major coefficient factor in parabolic equation,” Lviv University Paper. Ed.64,. pp.181-189.
[10] M. Ivanchov, Inverse problem for equations of parabolic type. Mathematical Studies. Monograph Series. Lviv. VNTL Publishers. vol.10, 2003.
[11] A. Hasanov, “Simultaneus determination of source terms in liner parabolic problem from the final overdetermination approach,” J. Math. Anal.Appl., vol. 330(2) pp. 766-779, 207. Doi:10.1016/j.jmaa.2006.08.018.
[12] A. Lorenzi and G. Mola, “Identefication of unknown terms in convolution integro-differential equations in a Banach space,” J.Inverse Ill-Posed Probl., vol. 18(3), pp. 321-355, 2010. Doi:10.1515/jllp.2010.016.
[13] E. Pais, “Identification of memory kernels in heat flow measuring heat flux at the ends of the bar,” Math. Model. Anal., vol. 15(4), pp. 473-490, 2010. Doi:10.3846/1392-6292.2010.15.473-490.
References (International): [1] E. Savateev, "The problem of identification of a coefficient in a parabolic equation," Siberian Mathematical Journal. vol.36, no. 1. pp. 177-185, 1995.
[2] M. Ivanchov, "Inverse problem for the multidimensional heat equation with unknown source," Matematychni Studii. no16, pp. 93-98, 2001.
[3] Dinh Nho Hào, Phan Xuan Thanh, D. Lesnic, and M. Ivanchov, "Determination of a source in the heat equation from integral observations," Journal of Computational and Applied Mathematics, no. 264, pp. 82–98, 2014.
[4] M. S. Hussein, and D. Lesnic, "Simultaneous determination of timedependent coefficients and heat source," International Journal for Computational Methods in Engineering Science and Mechanics, vol. 17, pp. 401-411, August 2016.
[5] N. Protsakh, "Inverse problem for weakly nonlinear ultraparabolic equation with three unknown functions of different arguments on the right side," Ukrainian Mathematical Journal. vol. 66, no. 3, pp. 371-390, 2014.
[6] K. Kasemets, and J. Janno, "Reconstruction of a Source Term in a Parabolic Integro-Differential Equation from Final Data," Mathematical Modelling and Analysis, vol. 16, no. 2, pp.199–219, 2011.
[7] M. Hussein, D. Lesnic, and M. Ivanchov, "Identification of a Heterogeneous Orthotropic Conductivity in a Rectangular Domain," International Journal of Novel Ideas: Mathematics, S.l., vol. 1, pp. 1-11, apr. 2017.
[8] N. Pabyrivska, and V. Vlasov, "The determination of major coefficient factor in parabolic equation," Mathematical methods and physico-mechanical fields, vol.49, no. 3, pp.18-25, 2006.
[9] N. Pabyrivska, and O. Varenyk, "The determination of major coefficient factor in parabolic equation," Lviv University Paper. Ed.64,. pp.181-189.
[10] M. Ivanchov, Inverse problem for equations of parabolic type. Mathematical Studies. Monograph Series. Lviv. VNTL Publishers. vol.10, 2003.
[11] A. Hasanov, "Simultaneus determination of source terms in liner parabolic problem from the final overdetermination approach," J. Math. Anal.Appl., vol. 330(2) pp. 766-779, 207. Doi:10.1016/j.jmaa.2006.08.018.
[12] A. Lorenzi and G. Mola, "Identefication of unknown terms in convolution integro-differential equations in a Banach space," J.Inverse Ill-Posed Probl., vol. 18(3), pp. 321-355, 2010. Doi:10.1515/jllp.2010.016.
[13] E. Pais, "Identification of memory kernels in heat flow measuring heat flux at the ends of the bar," Math. Model. Anal., vol. 15(4), pp. 473-490, 2010. Doi:10.3846/1392-6292.2010.15.473-490.
Content type: Conference Abstract
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Pabyrivska_N-Inverse_Problem_for_361-363.pdf107.28 kBAdobe PDFView/Open
2018_Pabyrivska_N-Inverse_Problem_for_361-363__COVER.png506.95 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.