Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52523
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKotsovsky, Vladyslav
dc.contributor.authorGeche, Fedir
dc.contributor.authorBatyuk, Anatoliy
dc.coverage.temporal21-25 August 2018, Lviv
dc.date.accessioned2020-06-19T12:05:42Z-
dc.date.available2020-06-19T12:05:42Z-
dc.date.created2018-02-28
dc.date.issued2018-02-28
dc.identifier.citationKotsovsky V. Finite Generalization of the Offline Spectral Learning / Vladyslav Kotsovsky, Fedir Geche, Anatoliy Batyuk // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 356–360. — (Hybrid Systems of Computational Intelligence).
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52523-
dc.description.abstractWe study the problem of offline learning discrete functions on polynomial threshold units over specified set of polynomial. Our approach is based on the generalization of the classical "Relaxation" method of solving linear inequalities. We give theoretical reason justifying heuristic modification improving the performance of spectral learning algorithm. We demonstrate that if the normalizing factor satisfies sufficient conditions, then the learning procedure is finite and stops after some steps, producing the weight vector of the polynomial threshold unit realizing the given threshold function. Our approach can be applied in hybrid systems of computational intelligence.
dc.format.extent356-360
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofData stream mining and processing : proceedings of the IEEE second international conference, 2018
dc.subjectoffline learning
dc.subjectpolynomial threshold unit
dc.subjectthreshold function
dc.subjectartificial neural network
dc.titleFinite Generalization of the Offline Spectral Learning
dc.typeConference Abstract
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.contributor.affiliationUzhhorod National University
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages5
dc.identifier.citationenKotsovsky V. Finite Generalization of the Offline Spectral Learning / Vladyslav Kotsovsky, Fedir Geche, Anatoliy Batyuk // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 356–360. — (Hybrid Systems of Computational Intelligence).
dc.relation.references[1] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1999.
dc.relation.references[2] T. Motzkin and I. Schoenberg, “The relaxation method for linear equalities,” Canadian Journal of Math., vol. 6, pp. 393−404, 1954.
dc.relation.references[3] R. Duda, P. Hart and D. Stork, Pattern Classification, 2nd ed. New York: Wiley-Interscience, 2001.
dc.relation.references[4] M. L. Dertouzos, Threshold Logic: A Synthesis Approach. Cambridge, MA: The MIT Press, 1965.
dc.relation.references[5] F. Geche. Analysis of Discrete Functions and Logical Circuits in Neural Basis. Uzhgorod: Vydavnytstvo V. Padyaka, 2010. (in Ukrainian)
dc.relation.references[6] S. Hampson and D. Kibler, “Minimum generalization via reflection: a fast linear threshold learner,” Machine Learning vol. 37(1), pp. 51-73, 1999.
dc.relation.references[7] J. Bruck, “Harmonic analysis of polynomial threshold functions,” Siam Journal on Discrete Mathematics, vol. 3 (2), pp. 168–177, 1990.
dc.relation.references[8] F. Е. Geche, V. M. Kotsovsky and A. Ye. Batyuk, “Learning algorithms for generalized neurons over character set,” Zbirnyk naukovykh prats instytutu problem modelyuvannya v energetytsi NAN Ukrayiny, vyp. 41, pp. 124-136, 2007. (in Ukrainian)
dc.relation.references[9] I. Tsmots, V. Teslyuk, T. Teslyuk and I. Ihnatyev, “Basic components of neuronetworks with parallel vertical group data real-time processing,” Advances in Intelligent Systems and Computing, vol. 689, Springer, Cham., pp. 558–576, 2018.
dc.relation.references[10]V. Teslyuk, V. Beregovskyi, P. Denysyuk, T. Teslyuk and A. Lozynskyi, “Development and implementation of the technical accident prevention subsystem for the smart home system,” International Journal of Intelligent Systems and Applications, vol. 10, No.1, pp. 1–8, 2018.
dc.relation.references[11]F. Geche, V. Kotsovsky and A. Batyuk, “Synthesis of the integer neural elements,” in Proceedings of the International Conference on Computer Sciences and Information Technologies CSIT 2015, Lviv, Ukraine, September 14-17 2015, pp. 121–136.
dc.relation.referencesen[1] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1999.
dc.relation.referencesen[2] T. Motzkin and I. Schoenberg, "The relaxation method for linear equalities," Canadian Journal of Math., vol. 6, pp. 393−404, 1954.
dc.relation.referencesen[3] R. Duda, P. Hart and D. Stork, Pattern Classification, 2nd ed. New York: Wiley-Interscience, 2001.
dc.relation.referencesen[4] M. L. Dertouzos, Threshold Logic: A Synthesis Approach. Cambridge, MA: The MIT Press, 1965.
dc.relation.referencesen[5] F. Geche. Analysis of Discrete Functions and Logical Circuits in Neural Basis. Uzhgorod: Vydavnytstvo V. Padyaka, 2010. (in Ukrainian)
dc.relation.referencesen[6] S. Hampson and D. Kibler, "Minimum generalization via reflection: a fast linear threshold learner," Machine Learning vol. 37(1), pp. 51-73, 1999.
dc.relation.referencesen[7] J. Bruck, "Harmonic analysis of polynomial threshold functions," Siam Journal on Discrete Mathematics, vol. 3 (2), pp. 168–177, 1990.
dc.relation.referencesen[8] F. E. Geche, V. M. Kotsovsky and A. Ye. Batyuk, "Learning algorithms for generalized neurons over character set," Zbirnyk naukovykh prats instytutu problem modelyuvannya v energetytsi NAN Ukrayiny, vyp. 41, pp. 124-136, 2007. (in Ukrainian)
dc.relation.referencesen[9] I. Tsmots, V. Teslyuk, T. Teslyuk and I. Ihnatyev, "Basic components of neuronetworks with parallel vertical group data real-time processing," Advances in Intelligent Systems and Computing, vol. 689, Springer, Cham., pp. 558–576, 2018.
dc.relation.referencesen[10]V. Teslyuk, V. Beregovskyi, P. Denysyuk, T. Teslyuk and A. Lozynskyi, "Development and implementation of the technical accident prevention subsystem for the smart home system," International Journal of Intelligent Systems and Applications, vol. 10, No.1, pp. 1–8, 2018.
dc.relation.referencesen[11]F. Geche, V. Kotsovsky and A. Batyuk, "Synthesis of the integer neural elements," in Proceedings of the International Conference on Computer Sciences and Information Technologies CSIT 2015, Lviv, Ukraine, September 14-17 2015, pp. 121–136.
dc.citation.conferenceIEEE second international conference "Data stream mining and processing"
dc.citation.spage356
dc.citation.epage360
dc.coverage.placenameЛьвів
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Kotsovsky_V-Finite_Generalization_356-360.pdf333.56 kBAdobe PDFView/Open
2018_Kotsovsky_V-Finite_Generalization_356-360__COVER.png476.06 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.