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Abstract—We study the problem of offline learning discrete 
functions on polynomial threshold units over specified set of 
polynomial. Our approach is based on the generalization of the 
classical "Relaxation" method of solving linear inequalities. 
We give theoretical reason justifying heuristic modification 
improving the performance of spectral learning algorithm. We 
demonstrate that if the normalizing factor satisfies sufficient 
conditions, then the learning procedure is finite and stops after 
some steps, producing the weight vector of the polynomial 
threshold unit realizing the given threshold function. Our 
approach can be applied in hybrid systems of computational 
intelligence. 

Keywords—offline learning, polynomial threshold unit, 
threshold function, artificial neural network. 

I. INTRODUCTION

Artificial neural networks on the base of neural-like 
computational units have many applications and are 
intensively used for solving numerous important practical 
tasks [1]. It should be mentioned that many different models 
of neuron have been proposed. Polynomial threshold units 
(PTU) are ones of the most powerful between neural-like 
units with threshold activation function. They are based on 
separation of the n-dimensional space by the polynomial 
hypersurface. 

Our offline learning algorithm for PTU uses the basic 
idea of "Relaxation" method introduced by Motzkin and 
Schoenberg [2]. Many different modifications of this 
method concerning online learning algorithms for 
perceptron-like devices proposed in [1, 3]. The offline 
modification of the algorithm with similar learning rules 
described in [4] for linear threshold units. Its generalization 
for PTU may be found in [5]. The main lack of these 
algorithms is the possibility of infinite learning time and 
convergence to the boundary point of the acceptable 
solution set. Hampson and Kibler proposed the modification 
of the choice of the amount of correction for online learning 
[6]. They announced that slightly larger normalizing factor 
in Reflection algorithm improves performance, but their 
reasons are rather "heuristic" and based only on empirical 
data. 

The paper has the following organization: first the 
structure of PTU over given set of polynomials X and the 
notion of X-threshold function are given. Then basic 
concepts of our learning framework are described by using 
of the spectral technics similar to proposed in [7]. The rule 
of the choice of learning coefficients is discussed. In the 
next chapter the finiteness of the learning is proved. Finally, 

we analyze the results of computer simulation and make 
conclusions. 

II. POLYNOMIAL THRESHOLD UNITS

A computation unit with n inputs nxx ,...,1  and one 
output { }1,1−∈y  is said to be a polynomial threshold unit if
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where ( )nww ,...,1=w  is the weight vector and the activation 
function is the sign function, given by 
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is equal to 0, then the output value of the PTU is incorrect 
(i.e. it does not belong to bipolar set { }1,1− ). But it is easy to
prove that using "small" changes of PTU weights we can 
always avoid this inconvenience. 

PTU and neural nets on their base are useful in pattern 
recognition methods providing sets separation in n-
dimensional Euclidean space. One of the most important 
tasks is the one of separating the Boolean hypercube { }n1,1−
vertices to two different sets. For such task we can limit 
oneself in (1) with the terms of the form 

kk iiii xxw ...
11... . This 

is because ( )N,1 122 ∈== + lxxx ll  in such case. From here
we will restrict our attention only to PTU with inputs 
belonging to the bipolar set {–1, 1}. 

We think of a Boolean function as a mapping 
22: EEf n → , where { }1,12 −=E . Let us define functions 

22: EEn
j →χ  by ( ) ,...1
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( )
1 rj l la aχ = ⋅ ⋅a  , if 1 22 2 2 rn l n l n lj − − −= + + + , ...1 1 <≤ l

nlr ≤< . The mappings , 0,1, , 2 1n
j jχ = −  are well-

known as characters of the group 2
nE  over the real number 

field R. 

Let { }1
, ,

mi iχ χΧ =   be an arbitrary set of characters

and 2 2: nf E E→  is the given Boolean function. If there 
exists a such weight vector ( )1, , Rm

mw w= ∈w   that  

for all ( )1 2, , n
na a E= ∈a   ( ) ( )
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then we say that  f  is realizable on the PTU, or  f  is X-
threshold function. 

Furthermore, the weight vector w must satisfy the 
following condition: for all 2

nE∈a  ( )( ), 0χ ≠w a , where

( )( ) ( ) ( )
11,

mi m iw wχ χ χ= + +w a a a  is the inner product of

the vector w with ( ) ( ) ( )( )1
, ,

mi iχ χ χ=a a a . We call such 
weight vectors X-acceptable. Note that the notion of X-
threshold function is the generalization of the notion of 
threshold function [4]. We shall denote by ( )W fΧ  the set
of all weight vectors of all PTU realizing the given X-
threshold function  f.

III. LEARNING FRAMEWORK

We assume that in our model of supervised learning the 
set of polynomials (characters) X is fixed and an arbitrary 
X-threshold function 2 2: nf E E→  is given. We will be 
interested in algorithm of finding some finite sequence of 
weight X-acceptable vectors  

rwww ...,,, 10 (2)

that the function f can be realized on PTU with weight 
vector rw . 

For function ( )1,..., nf x x  we will define the spectral 
vector ( )1( ) , mf s sΧ =s   respectively to the set X in the 
following way: 

( ) ( )
2

, 1,
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Let ( ) RmW fΧ∈ ⊂w be an arbitrary weight vector of
the PTU realizing the function f over the set X. It is 
important for us that the set ( )fWX  is a cone. Suppose that 
the first k+1 members 0 1, , , kw w w  of the sequence (2) are 
already chosen and let kw  be an m-dimensional Х-
acceptable real vector. If the function f can be realized on 
PTU with the weight vector kw , then the learning succeed.  

Suppose that previous assumption is wrong. This implies 
that  f  is not realizable on PTU with the weight vector kw . 
Let us describe how we can obtain the vector 1k +w  closer to 
the all ( )fWX∈w  than the previous vector kw , i.e.

1k k+ − < −w w w w , (3)

where ( ),=x x x  is the Euclidean norm in the space Rm .
The condition (3) is well-known Fejér condition [2]. 

Let us use the learning rule: 

kkk zww +=+1 , (4)

where kz  is the correction vector. Now we consider the 
question of the choice of the increment kz . Let 

( )1,k
nf x x  be a Boolean function realizable over the set 

X on PTU with weight vector kw . From previous 
assumption it follows that kf f≠  and ( ) ( )kf fΧ Χ≠s s . 

Similarly to [4] we select the increment vector kz  in the 
following way: 

( ) ( )( )k k
k f fα Χ Χ= −z s s , 

where kα  is a some positive coefficient. 

We proved in [8] that inequality (3) is held for fixed 
( )fWX∈w , if the coefficient kα  is chosen to be 0

k kt α , 
where 
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and the value of the amount of correction kt  satisfies the 
following inequality: 

( ) ( )( )
( ) ( )( )

,
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 . (5)

According to the terminology of [4] we call the 
coefficient kt  a normalizing increment coefficient. 

From now on, we restrict ourselves consideration of 
increment vectors kz  of the form 

( ) ( )( )k o k
k kt f fα Χ Χ= −z s s , (6)

where the normalizing factor kt  satisfies (5). 

Remark 1. Note that for increments (6) the inequality (3) 
holds for each weight vector ( )W fΧ∈w  under the
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condition that the normalizing coefficient kt  satisfies 
inequality 0 2kt< ≤ . Sometimes, it is more convenient to 
require the Fejér condition for all ( )fWA X⊂∈w . Under
this condition it can be possible to obtain the upper bound in 
(5) greater than 2 (for all A∈w ).

Remark 2. When we chose the increment vector kz  in
the form (6) it is necessary to require that for all nE2∈a  

( )( )1, 0k χ+ ≠w a . In another case the weight vector 1k +w  is
not X-acceptable and in according to our definition of PTU
it is impossible to use 1k +w  for representing any Boolean
function. We always can reach it by small changes of the
increment vector (changing the normalizing increment
coefficient kt  in such way that condition (3) holds). Let kw

be an X-acceptable vector, but kkk zww +=+1  is already an 
unacceptable one. Then the set 

( )( ){ }0,, 1
2 =∈= + awaa χkn

k EA  is nonempty. We can use 

the increment ( ) k
k

k zz β−= 1~ , where kβ  is an arbitrary 
factor satisfying following condition: 

( )( ){ }
( )( ){ } 
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It is easy to verify that kkk zww ~~ 1 +=+  is the X-
acceptable weight vector. 

IV. FINITE MODIFICATION OF LEARNING ALGORITHM

We have already mentioned that the offline modification
of the rule (4) is due to Dertouzos [4] (see also [5]). In both 
works the coefficients kt  is from ( ]2,1 , the algorithm is not
guaranteed to terminate after a finite number of steps, and 
some rather complicated techniques are used. The first 
condition guaranting the finitness of the spectral offline 
learning was established in [8], where the rule was proposed 
of the normalizing coefficients choice, which utilization in 
spectral learning algorithm for X-threshold Boolean 
functions f ensures the finiteness of the learning procedure 
(i.e. after finite number of steps we certainly obtain the 
weight vector ( )r W fΧ∈w  ). If the coefficients kt  are 
chosen according to 

( ) ( )( )
12

,
k k k

t
f fΧ Χ

= +
−w s s

, (7)

then the learning process (4), (6) is finite. 

Now we can state our main results generalizing above 
mentioned one. For our purpose we will choose the 
coefficients kt  in the following way: 

( ) ( )( )ff
t kk

k
kk

XX, ssw −
+=

τσ , (8)

where ( )...,1,00,0 =>> kkk τσ . It easy to see that the rule 
(8) is the generalization of (7) with two additional sequences
of parameters.

Proposition 1. If a Boolean function f is X-threshold, 
the sequence (2) of X-acceptable weight vectors { }kw  is
built on the base (4) and (6), the normalizing coefficients kt  
satisfy (8) (accordingly to Remark 2), coefficients kσ
satisfy 

20 ≤≤ kσ  ( )...,1,0=k , (9)

and the sequence { }kτ is bounded and does not converge to
zero, then the learning process terminates after finite 
number of steps on some weight vector ( )r W fΧ∈w .

Proof. We need two simple lemmas established in [9]. 

Lemma 1. If for all X∈ − < −x v x w x  then for all 

conv X∈y  the inequality − < −v y w y  holds, where 
conv X  is the convex hull of set X in some Euclidean space. 

Lemma 2. Let { }nx  be a sequence of the vectors of R n ,

R nZ ⊂  and the set Z contains at least one inner point. Then 
if each Z∈z  satisfies inequality 1n n+ − < −x z x z , then 

the sequence { }nx  is convergent.

We prove the statement of the theorem by contradiction. 
Suppose that the sequence { }kw  is infinite. It is easy to
verify that for an arbitrary set of characters X and for an 
arbitrary Boolean function g the coordinates of the spectral 
vector ( )gΧs  are even integer numbers. Hence, for an 
arbitrary fixed integer vector ( )fWX∈′w  (note that such
vectors are always presented in the convex cone ( )W fΧ )

the numerator ( ) ( )( )kff XX, ssw −′  of the fraction in the
right part of (5) is an even natural number. Let A be a subset
of integer weighted vectors belonging to set ( )fWX

( )( )mfWA ZX ∩= and { }.sup kττ =  For all weight vectors
from the set { }AA ∈= wwττ  the choice of the increment
coefficients according to (8), (9) ensures (5). Thus, the Fejér 
condition for the set ( )fWXτ  (inequality (3)) also holds for

each member of the sequence { }kw . Let us also consider

integer vectors jj ewu −′= 2 , ( )mjjj ,...,1,2 =+′= ewv ,
where je  are the unit basis vector of the space Rm . It easy 
to see that ( )j W fΧ∈u  and ( ) , 1,j W f j mΧ∈ =v . Let us
see 1 1conv{ , , , , }m mB = u u v v  . Now, using Lemma 1 to 
the polyhedron Bτ , we obtain that for each Bτ∈z  and for 

all members of the sequence { }kw  the following inequality

holds: 1k k+ − < −w z w z . The set of the interior points of 
the polyhedron Bτ  is nonempty (e.g. it contains the vector 

w′τ2 ). Hence, following Lemma 2, the sequence { }kw  is
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convergent. But from (6) it follows that for increment 
vectors  
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The denominator of the last fraction is bounded and 
( ) ( )( ) 0, XX >− ff kk ssw  [8]. Then, there exists such 

0min >τ  that for each 0k  there exists such 0kk > that 
numeartor of the last fraction is not less than minτ . So, the 
condition 0k →z  is violated, which is the necessary 
condition for the convergence of the sequence { }kw .
Therefore, on some step of the learning algorithm we obtain 
X-acceptable weight vector ( )r W fΧ∈w .

V. EMPIRICAL RESULTS

To study the dependence of efficiency of PTU learning 
on the value of coefficients kt  we have implemented a 
simulation test based on the learning of threshold Boolean 
functions corresponding to 10000 randomly generated 
weight vectors for 8=n  and 10=n features. We used 

{ }nxx ...,,,1X 1=  and constant ttk =  instead of (8) for the
sake of simplicity. For the comparison, we learned each 
function using two online algorithms Reflection and 
Reflect1 with ShuffleCycle order of the inputs [6]. 

First, we learned all generated Boolean functions for 
each ( ]10,0∈t  with the step 0.05 and counted the number of
successful learnings and the average amount of corrections. 
The initial

appro Mll
s

p

s
l

l ...,,1,
)ˆ(

1 )(

1
2/1)(

)( == 
=

μ
α

ε ximations 

were chosen randomly. The general tendencies are 
following: 

1. In the case ( ]1,0∈t  the learning failed due to violence of
the practical X-acceptability of weight vectors (the
absolute values of weighted sums became less than

1510− ).

2. In the case 1>t  all learning terminated successfully.

3. In the case 3>t  the quick growth was observed of the
number of iterations.

Fig. 1 provides an illustration of growth of the correction
curve in the case 3.3>t . In the case 9.3≥t  the average 
number of corrections exceeds 255 (not shown in this 
figure). 

Then we restricted ourselves on the study of the case 
( )3,1∈t . The number of functions left the same and 200

points were chosen uniformly (with the step 0.01). The 

corresponding curves of the number of iterations are shown 
in Fig. 2. As can be seen, the iteration number is 
complicated nonunimodal function which minimum point is 
in the neighborhood of the point 2=t : 02.2min =t , in the 
case 8=n , 03.2min =t in the case 10=n . 

Then we thoroughly studied the case [ ]1.2,9.1∈t  with
the step 0.001. The results are shown in Fig. 3. We found 
that 991.1min =t , 109.3min =c in the case 8=n , and 

997.1min =t , 462.4min =c  in the case 10=n , where minc  is 
the corresponding number of iteration in spectral algorithm. 

Fig. 1.  Average number of iterations in (1.1, 3.9) in the case n = 8. 

Fig. 2.  Average numbers of iterations in (1, 3) in the cases n = 8 (lower 
curve) and n = 10 (upper curve). 

For comparison, the average numbers of adjustments for 
Reflect1 are, respectively, 42.137 and 63.506 (the 
performance of Reflection is similar). 

Results in Fig. 1-3 are obtained in the case of random 
initial approximations. The performance of the our learning 
algorithm can be improved by using the optimized approxi-
mation ( )fX

0 sw = . The reasons are given in [4, 5] and 
results are shown in Fig. 4. Comparing Fig. 3 and Fig. 4 we 
can observe that the correction number has halved roughly 
in the case 8=n  and has decreased by one third in the case 

10=n . 
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Fig. 3.  Average numbers of iterations in [1.9, 2.1] in the cases n = 8 
(lower curve) and n = 10 (upper curve). 

Fig. 4.  Average numbers of iteration in [1.9, 2.1] in the cases n = 8 (lower 
curve) and n = 10 (upper curve) with optimized initial approximation. 

Finally, we studied the case 20=n  on 1000 random 
samples. For the spectral algorithm with optimized initial 
approximation 001.2min =t , 809.6min =c , and the average 
numbers of adjustments for Reflect1 is 252,413. The 
learning times are similar (Reflect is slightly faster). Note 
that it is possible to improve the performance of the learning 
algorithm by using kt  in the form (8). E.g., the simulation in 
the case 10=n  showed that we can increase performance 
by 12% using kt  for which 995.1=kσ , 1=kτ . 

VI. CONCLUSIONS

We proposed the new modification of offline learning 
method based on spectral approach. Our rule of the choice 
of normalizing coefficient ensures finite learning time for all 
X-threshold functions. In addition, in case of offline
learning we confirmed the hypothesis of Hampson that it is
reasonable to choose correction amount slightly larger than
2 [6]. The experimental results confirm the effectiveness of

developed method. They suggest to apply offline learning 
with optimized initial approximation ( )fX

0 sw =  and
coefficients [ ] ( )...,1,0,01.2,99.1 =∈ kkσ  to obtain a good
performance. 

It should be mentioned that our approach can be utilized 
in learning PTU to recognize the subsets of an arbitrary 
finite set in n-dimensional Euclidean space. Our learning 
technics can be applied to improve performance of basic 
components proposed in [9]. Nonlinear classifier on the base 
of PTU may be also used in systems described in [10]. 

It seems to be also interesting to find the bounds of the 
number of algorithm iterations, to estimate the size of 
corresponding integer weights of PTU and to compare them 
with the ones from [11]. 
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