Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52504
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMalets, Romanna
dc.contributor.authorMalets, Igor
dc.contributor.authorShynkarenko, Heorgiy
dc.contributor.authorVahin, Petro
dc.coverage.temporal21-25 August 2018, Lviv
dc.date.accessioned2020-06-19T12:05:24Z-
dc.date.available2020-06-19T12:05:24Z-
dc.date.created2018-02-28
dc.date.issued2018-02-28
dc.identifier.citationModeling of Thermoviscoelasticity Time Harmonic Variational Problem for a Thin Wall Body / Romanna Malets, Igor Malets, Heorgiy Shynkarenko, Petro Vahin // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 259–264. — (Dynamic Data Mining & Data Stream Mining).
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52504-
dc.description.abstractThe paper presents the construction and analysis of vibration problem of thermoviscoelastic shells under the influence of non-stationary heat and under forced loads. The studied model was based on application of simplest finite element semidiscretization to mixed variational problem of dynamical thermoviscoelasticity. The problem in addition to the mutual influence of temperature field and stress field is also taken into account the viscoelastic properties of the material thin wall body. For assumptions quite suitable for applications we prove the well-posedness forthis model of time harmonic vibrations.
dc.format.extent259-264
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofData stream mining and processing : proceedings of the IEEE second international conference, 2018
dc.subjectinitial-boundary value problem
dc.subjectthermoviscoelasticity
dc.subjectmaterial with short-term memory
dc.subjectvariational formulation
dc.subjectsemidiscretization
dc.subjectwell-posedness of problem
dc.subjectGalerkin discretization
dc.titleModeling of Thermoviscoelasticity Time Harmonic Variational Problem for a Thin Wall Body
dc.typeConference Abstract
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.contributor.affiliationLviv State University of Life Safety
dc.contributor.affiliationIvan Franko National University of Lviv
dc.format.pages6
dc.identifier.citationenModeling of Thermoviscoelasticity Time Harmonic Variational Problem for a Thin Wall Body / Romanna Malets, Igor Malets, Heorgiy Shynkarenko, Petro Vahin // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 259–264. — (Dynamic Data Mining & Data Stream Mining).
dc.relation.references[1] R. Malets, and H. Shynkarenko, “Modeling and solvability of the variational problem of thermo-elastic thin shells, compliant to shear and compression,” Manufacturing Processes. Actual Problems, Basic Science Applications. Opole: Politechnika Opolska, vol.1, pp. 103-121, 2014.
dc.relation.references[2] R. B. Malets, “Modeling of heat conduction processes in a thin threedimensional layer,” Visnyk of the Lviv University. Series Appl. Math. and Informatics, iss. 1, pp. 240-250,2009.
dc.relation.references[3] P. M. Naghdi, “The Theory of Shells and Plates,” Handbuch der Physik Berlin-Heidelberg-New York: Springer, vol. VIa2, pp. 425–640, 1972.
dc.relation.references[4] Ya. S. Podstrigach, and R. N. Shvets, Thermoelasticity of thin shells. K.: Naukova dumkа, 1978.
dc.relation.references[5] P. P. Vahin, R. B. Malets, and H. A. Shynkarenko, “Variational formulation of the problem of nonstationary thermo-elasticity for thin shells compliant to shears and compression,” J. Math. Sci., no. 3, pp. 345–364,2016.
dc.relation.references[6] R. Malets, and H. Shynkarenko, “Construction and analyse one-step integration time scheme for problem of thermoelastic shells compliant to shear and compression,” Applied radioelectronics, vol. 14, no 2, pp. 176-184, 2015.
dc.relation.references[7] J. Necas, and I. Hlavacek, Mathematical Theory of Elasticity and Elastic-Plasstic Bodies: An Introduction. Amsterdam:Elsevier, 1981.
dc.relation.references[8] V. Stelmashchuk, and H. Shynkarenko, “Finite Element Analysis of Green-Lindsay Thermopiezoelectricity Time Harmonic Problem,” Visnyk of the Lviv University. Series Appl. Math. and Informatics, iss. 25, pp. 136–147, 2017.
dc.relation.references[9] Ya. G. Savula, and N. P. Fleishman, Calculation and optimization of shells with carved median surfaces. Lviv: Vishcha School, 1989..
dc.relation.referencesen[1] R. Malets, and H. Shynkarenko, "Modeling and solvability of the variational problem of thermo-elastic thin shells, compliant to shear and compression," Manufacturing Processes. Actual Problems, Basic Science Applications. Opole: Politechnika Opolska, vol.1, pp. 103-121, 2014.
dc.relation.referencesen[2] R. B. Malets, "Modeling of heat conduction processes in a thin threedimensional layer," Visnyk of the Lviv University. Series Appl. Math. and Informatics, iss. 1, pp. 240-250,2009.
dc.relation.referencesen[3] P. M. Naghdi, "The Theory of Shells and Plates," Handbuch der Physik Berlin-Heidelberg-New York: Springer, vol. VIa2, pp. 425–640, 1972.
dc.relation.referencesen[4] Ya. S. Podstrigach, and R. N. Shvets, Thermoelasticity of thin shells. K., Naukova dumka, 1978.
dc.relation.referencesen[5] P. P. Vahin, R. B. Malets, and H. A. Shynkarenko, "Variational formulation of the problem of nonstationary thermo-elasticity for thin shells compliant to shears and compression," J. Math. Sci., no. 3, pp. 345–364,2016.
dc.relation.referencesen[6] R. Malets, and H. Shynkarenko, "Construction and analyse one-step integration time scheme for problem of thermoelastic shells compliant to shear and compression," Applied radioelectronics, vol. 14, no 2, pp. 176-184, 2015.
dc.relation.referencesen[7] J. Necas, and I. Hlavacek, Mathematical Theory of Elasticity and Elastic-Plasstic Bodies: An Introduction. Amsterdam:Elsevier, 1981.
dc.relation.referencesen[8] V. Stelmashchuk, and H. Shynkarenko, "Finite Element Analysis of Green-Lindsay Thermopiezoelectricity Time Harmonic Problem," Visnyk of the Lviv University. Series Appl. Math. and Informatics, iss. 25, pp. 136–147, 2017.
dc.relation.referencesen[9] Ya. G. Savula, and N. P. Fleishman, Calculation and optimization of shells with carved median surfaces. Lviv: Vishcha School, 1989..
dc.citation.conferenceIEEE second international conference "Data stream mining and processing"
dc.citation.spage259
dc.citation.epage264
dc.coverage.placenameЛьвів
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Malets_R-Modeling_of_Thermoviscoelasticity_259-264.pdf534.37 kBAdobe PDFView/Open
2018_Malets_R-Modeling_of_Thermoviscoelasticity_259-264__COVER.png443.99 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.