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Abstract—The paper presents the construction and analysis 
of vibration problem of thermoviscoelastic shells under the 
influence of non-stationary heat and under forced loads. The 
studied model was based on application of simplest finite 
element semidiscretization to mixed variational problem of 
dynamical thermoviscoelasticity. The problem in addition to 
the mutual influence of temperature field and stress field is 
also taken into account the viscoelastic properties of the 
material thin wall body. For assumptions quite suitable for 
applications we prove the well-posedness forthis model of time 
harmonic vibrations. 

Keywords—initial-boundary value problem, thermo-
viscoelasticity, material with short-term memory, variational 
formulation, semidiscretization, well-posedness of problem, 
Galerkin discretization. 

I. INTRODUCTION

Mathematical modeling methods of thin-walled 
structures that are under forced, temperature and 
electromagnetic loads are wide tools base of continuum 
mechanics and its engineering applications.  

Last time, well developed analytical methods for solving 
this class of problems are actively complemented by methods 
of computational mathematics and computer simulation, the 
successful application of which often requires revision and 
supplementation of classical models, for example, shell 
theory, developing appropriate software. The filling of 
mechanics with an intensive influx of engineering problems, 
for example, with smart materials, makes studies in this field 
relevant and timely. 

In authors` previous articles [2] a development and 
analysis of the dimension reducing methods for heat 
conduction problem and thermoelasticity problem for thin 
flexible bodies have been investigated. 

In work [6] theory of thermoviscoelastic thin wall 
elements for dynamical problems was considered. In this 
article, similar techniques as in [7] are applied to the problem 
of forced vibrations of thermoviscoelastic shells [7]. 

II. PROBLEM STATEMENT 

Let be the bounded connected domain nD ∈ ℜ  of points 
1 2( , , , )nx x xx =  with Lipschitz-continuous boundary 

D S∂ = , and { } 1
n

i in ==n  is unit outer normal vector
cos( , )i in x= n . Also let us consider time interval 

[ ]0,T , 0 T< < +∞ . Notation 3
1{ ( , )}i iF t =x  is a vector of

volume mechanical forces, a vector of surface mechanical 
loads 3

1{ ( , )}i itσ == x
 σ  on the boundary S Sσ ⊂ , represents

volume heat forces ( , )g g t= x . Like in classic 
thermoelasticity problem, our goal is to find vector of elastic 
displacements 3

1{ ( , )}i iU t ==U x  and temperature 
increment ( , )tθ x , which satisfy the following equations in 

(0, ]D T×  (here and everywhere below the ordinary 
summation by repetitive indices is expected) [2],[3]:  

, i k ki iU Fρ σ ρ′′− ∂ =  (1)

0( ) ,i ij j ij i ic U gεθ λ θ θ β′ ′− ∂ ∂ + ∂ =  (2)

The above expressions (1)-(2) are equation of motion, 
heat conduction equation, where : / , : / ,i iv x v v t′∂ = ∂ ∂ = ∂ ∂

: ( ) .t tv v′′ = ∂ ∂  Below we will explain the meaning of each 

notation more thoroughly. Here { } . 1

n
ij i j

σ
=

=σ  is a stress 

tensor, which is defined by the following constitutive 
equation, namely hypothesis Duhamel-Neumann for material 
with short-term memory: 

v( , ) : ( ) ( ) ( )

( ) ( ) ,

e t
ij ij ij ij

ijkm km ijkm km ijc E a E

σ θ σ σ σ θ
β θ

′= + +

′= + −

U U U

U U
(3)
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Strain tensor ( )ikE U  is assumed to satisfy the relations: 

1( ) : ( ).
2ik i k k iE U U= ∂ + ∂U (4)

Notation ( )ρ ρ= x  is a mass density of thermoelastic 
material, ( )c cε ε= x  is its specific heat. Tensors ijkmc  and 

ijkma  describe the thermoelasticity and viscosity properties 
of material with short-term memory. Also notation ijβ  and 

ijλ  depicts a thermal stress coefficients tensor and a thermal 
conductivity coefficients tensor with the common properties 
of symmetry and ellipticity: 

0 0

0 0

0 0

0 0

, ,

, 0, ,

, 0, ;

, , 0,

, , 0 .

ijkm jikm kmij ijkm jikm kmij

ijkm ij km ij ij ij ji

ijkm ij km ij ij ij ji

ij ji ij i j

ij ji ij i j i

c c c a a a

c c c const

a a a const

const

const

ε ε ε ε ε ε
ε ε ε ε ε ε

λ λ λ ξ ξ λ λ
β β β ξ ξ β β ξ

 = = = =
 ≥ = > ∀ = ∈
 ≥ = > ∀ = ∈

= ≥ = >
 = ≥ = > ∀ ∈






(5)

To finalize the formulation of the initial boundary value 
problem of thermoelasticity, the system of partial differential 
equations (1), (2) is then complemented by boundary 
conditions 

0 [0, ], ,
i [0, ]

i
, \

n
n ,

u u

ij j i u

S T S S
n S T S S Sσ σσ σ
= × ⊂

= × =
U

 (6)

0 [0, ],
[0, ], \

on
on ,ij i i q q

S T
n q S T S S S

θ

θ

θ
λ θ κθ
= ×

− ∂ = + × = (7) 

and the initial conditions 

0 0 0 0 0 0| , n| i| , ,t t t t Dθ θ= = == ∂ = =U U U V

(8)

where κ  is known heat transfer coefficient with the 
environment, 0θ  is a fixed initial temperature of the body. 
Vector q  describes applied heat flux correspondingly.

I. VARIATIONAL PROBLEM OF THERMOVISCOELASTICITY

Let us introduce the spaces of admissible elastic
displacements and temperature increments (relatively to the 
initial temperature T0) respectively: 

1 3 2

1 3

на [ ( )] : 0 ( ),

( ) : 0 ,

 

на  .

,{ }
{ }

uH D S L D

G H D S Zθξ ξ

= ∈ = =

= ∈ = =

Y V V Z

H

Here symbol ( )mH D  means a standard Sobolev space. 

Then the initial boundary value problem of 
thermoviscoelasticity (1)-(8), can be rewritten in the 
following variational formulation: 

0 0 0
2

0 0

0

, , ;

{ , } (0, ; ) such, as
( ( ), ) ( ( ), ) ( ( ), )

( ( ), ) ( ),

give

,
( ( ), ) ( ( ), ) ( , ( )) ( ),

(0, ],
( (0) , ) 0, ( (0)

n 

find 

, ) 0 ,
( (0) , )

Z

L T G
m t a t c t

b t l t
t t b t r t

t T
m c

θ

θ

θ
θ ξ θ ξ ξ ξ

θ θ ξ

∈ ∈ ∈

∈ ×
′′ ′+ +

− =< >
′ ′+ Λ + =< >

∀ ∈
′ − = − = ∀ ∈

Ξ −

Ξ

U Y V H

U Y

U V U V U V

V V

U

U V V U U V V Y

0 .Gξ










∀ ∈ =






(9)

The introduced bilinear and linear forms are as follows: 

v v

1
0

( , ) : . ,

( , ) : ( ) : ( ) ( ) ( )

( , ) : ( ) : ( ) ( ) ( ) ,

( , ) : ( ) : ( ) , , ,

( , ) : ,

i i
D D

e e
ij ij

D D

ij ij
D D

t
i i

D D

D

m dD U V dD

c E dD E dD

a E dD E dD

b E dD V dD

c dDε

ρ ρ

σ σ

σ σ

ξ σ ξ βξ

θ ξ θ θξ−

= =

= =

= =

= = ∂ ∀ ∈

=Ξ

 

 

 

 



U V U V

U V U V U V

U V U V U V

V V U V Y

1 1
0 0

1 1
0 0

( , ) : ( ). ,

, : . . , , ,

, : , .

ij
D Sq

D Sq

D Sq

dD dS

l dD dS

r g dD q dS G

θ ξ θ λ θ ξ θ κθξ

ρ

ξ θ ξ θ ξ θ ξ

− −

− −

Λ = ∇ ∇ +

< > = + ∀ ∈

< > = − ∀ ∈

 

 

 

V F V V U V Y




σ

Using Korn inequality and the symmetric and elliptic 
properties (5) we can define following norms on spaces Y 
and G 

|| || : ( , ), || || : ( , ),

||| ||| : ( , )

|| || : ( , ), || || : ( , )Z G

m c

a Gθ

θ θ θ θ θ θΞ

= =

= ∀ ∈ ∀ ∈

= = Λ

H Y

Y

U U U U U U

U U U U Y (10)

Also can be written the energy balance equation: 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



261 

[ ]

1 2 2 2
2

2 2

0
2 2 21

0 0 02

0

|| ( )|| || ( )|| || ( )||

||| ( ) ||| || ( ) ||

|| || || || || ||

( ), ( ) ( ), ( ) (0, ].

t

G

t

t t t

d

l r d T

θ

τ θ τ τ

θ

τ τ τ θ τ τ τ

 + +  
′ +

 ′ + = 

 + + 

′+ < > + < > ∀ ∈





H Y Z

Y

H Y Z

U U

U

V U

V

(11)

Here 2 2 21
2 || ( ) || || ( ) || || ( ) ||t t tθ ′ + + H Y ZU U  determines the

instant total energy value, 2 2

0

||| ( ) ||| || ( ) ||
t

G dτ θ τ τ ′ +  YU  

determines dissipation of energy was caused by viscosity and 
temperature field of an elastic body, 

2 2 21
0 0 02 || || || || || ||θ + + H Y ZV U  initial energy value,

[ ]
0

( ), ( ) ( ), ( )
t

l r dτ τ τ θ τ τ′< > + < > V  an influx of energy.

Formulated in accordance with the problem (1) – (8), the 
variational task of the dynamic thermoviscoelasticity of an 
elastic body, taking into account the corresponding linear 
elastic-viscous properties of the material and the energy 
balance equation (1.10), will be the basis for investigations 
of thermoviscoelastic processes in thin-walled bodies. 

III. PARTIALLY DISCRETIZED VARIATIONAL PROBLEM OF 
THERMOVISCOELASTICITY FOR A THIN WALL BODY

Let an elastic body 3D ∈ℜ  referred to fixed curvilinear
orthogonal coordinate system 1 2 3( , , )α α α  (fig. 1) as 
follows: 

3
3 1 2

1 11 1
3 2 22 2

: { ( , ) : ( , ) ,

( , )} ( , ),

D

h h h h

α α α

α

= = ∈ = ∈ Ω

∈ − + = Ω × − +

r α α

where thickness 0h const= >  is substantially smaller 
compared to other space dimensions, 1h diamΩ . The 
body of such kind we shall name shell, its set 

{ ( ,0) }DΩ = = ∈r α  will named the middle surface of shell
and denote its contour through Γ = ∂Ω . In this coordinate
system a surface element dΩ  and a volume element dD  of
the body are defined as:

1 2 1 2 3 3 3, ,d H H d dD H H H d d d dα αΩ = = = Ωα α  (12) 

3 3 3(1 ), 1, 1,2.i i iH A k H A iα= + = ≡ =  (13) 

Неre ( )i iA A= α  and ( )i ik k= α  – coefficients of the first 
quadratic form and the principal curvatures of the surface Ω  
[4]. Notes { 2}h±Ω = Ω× ±  are facial surfaces and 

( 2, 2)h hΣ = Γ× − – lateral surface, 
then S + −= Ω Ω Σ  . Assume the surface of the body is 
divided into parts nonzero measure as follows 

Fig. 1.  – Domain D  and mid-surface Ω  referred to fixed curvilinear 
coordinate system 1 2 3( , , )α α α . 

{ }
{ }

1
3 2

1
3 2

: : , ,

, : : , .

u

q

S S D h

S S D h

θ

σ

α

α+ − ±

= = Σ = ∈ ∈ Γ = ∂Ω ≤

= = Ω Ω Ω = ∈ ∈ Ω = ±

r

r

α

α

By the Timoshenko-Mindlin hypotheses [5] we shall 
assume that a displacement vector ( ){ }3

1
,i i

U t
=

=U r  and

temperature ( , )tθ θ= r  can approximated by the linear 
combinations of a functions ( ( , ), ( , ))t t=s u α γ α  and 

1 2( ( , ), ( , ))t tθ θ=θ α α  such that 

3

1 2 3

( , ) ( , ) ( , ),
( , ) , ) ( , ) ( , ) .

t t t
t t t D

α
θ θ αθ α

≅ +
≅ + ∀ ∈

U r u

r

α γ α
(α α α

Here { }3
1( , )i iu t ==u α  and 1 1( , )tθ θ= α  are 

approximations of the displacement vector and temperature 
on the middle surface, 

3

2 3

( , ) ( ,0, ) ,

( , ) ( ,0, ) , ( , ) [0, ].

t t
t t t T

α
θ θ α

≅ ∂ ∂

≅ ∂ ∂ ∀ ∈ Ω×

γ Uα α

α α α

As results of partially discretization after the thickness 
variable of the problem equations (9) we obtained a variation 
formulation problem for thermoelastic shells in the terms of 
the displacements vector 1 2( , ) ( ( , ), ( , ))t t= =s s s u α γ α  and 
temperature vector

1 2

( ( , ), ( , ))t tθ θ=θ α α : 
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0 0 0
2

0 0

, , , , ;

, } (0, ; ) such,as
( ( ) , ) ( ( ) , ) ( ( ) , )

( ( ) , ) ( ), ,
( ( ) , ) ( ( ) , ) (0, ],

( , ( )) ( ),
( (0) , ) 0, ( (0) , ) 0

given

find {
h

h h

W

L T W Q
m t a t c t

b t l t
t t t T
b t r t

m c

Ω Ω Ω

Ω

Ω Ω

Ω

Ω Ω

∈ ∈ ∈ ∈

= ∈ ×
′′ ′+ +
− = < >
′ + Λ ∀ ∈

′+ = < >
′ − = − =

Ξ

Ξ

s v H θ g Z f H

s θ

s v s v s v

θ v v

θ ξ θ ξ

ξ s ξ

s s v

ψ

v v s

0( (0) , ) 0 , .h hW QΩ












 − = ∀ ∈ ∀ ∈ θ θ ξ v ξ

(14)

We used the follows introduced spaces: 

1 6

1 2

{ [ ( )] : 0 },

{ [ ( )] : 0 }.
h u

h

W H S

Q

на

H на Sθ

= ∈ Ω =

= ∈ Ω =

w w

ξ ξ

The bilinear and linear forms are defined as: 

( )

( )

2
2

1 2
, 1

1 2

1 2

1 2 1 2

1 2

2
1 2

0 1 2
, 1

( , ) . ,

( , ) ( ) . ,

( , ) ( ) .

( , ), ( , ) ,

( , ) ( ). ( ) ,

( , ) ,

( , ) ( , ) (

i j
i j

i j

h

i j
i j

i j

m A A d

a A A d

c A A d

W

b A A d

A A d

ρ φ

β

θ φ θ ξ

λ κ

+ −
Ω

= Ω

Ω
Ω

Ω
Ω

Ω
Ω

− + −
Ω

= Ω

Ω Ω Ω

=

=

=

∀ = = ∈

= Φ

=

Λ = +

Ξ

 







 

s v s v α

s v Cs BC v α

s v Cs BC v α

s s s v v v

θ v θ C v α

θ ξ α

θ ξ ξ



θ θ

{
( )}

1 2 1 2
1

0 1

1 2 1 2 1 2

1
1 2

, ),
, ,

, : ( )

( ) ( )

( ( ) , ) , ;

2

h

h

Q

r q q

q q k k A A d

c t Q

h

ε

θ θ ξ ξ

θ ξ

ξ ξ

ξ ξ

− + −

Ω
+ −

−
Ω

∀ ∈

< > = − +

+ − + +

+ Ξ ∀ ∈



ξ

ξ

α

g ξ

θ = ( , ) = ( , )

ξ

ξ = ( )

(15) 

{

}

2
1

1 2 12
, 1

1
2 1 2 1 22

, : ( ) [1 (1 )]

( ( ) , ) ( , ) .

i j

h

l h k k

h A A d m t W

+ −

= Ω

Ω

< > = − + + + +

− + ∀ = ∈

 v v

v α f v v v v

 σ σ

Here { }6

, 1ij i j
C

=
=C , { }11

, 1
( )ij

i j
B

=
=B θ , { }11

1
( ) ( )i

i=
= Φθ θΦ , β ar

e data presented in [1], heat flux data ,q q+ −  are given on 

,+ −Ω Ω , also surface loads ( , )tr
σ  are described such as 

3
3 1

3
1

3
1

( , ) { ( , , )}

( , ) ( , ) , ,

( , ) ( , ) , .

{ }
{ }

i i

i i

i i

t t

t t if
t t if

σ α

σ
σ

=

+ +
= +

− −
= −

= =

 = ∈ Ω= 
= ∈ Ω

r
 σ α

σ α α α

σ α α α

( )

{
[ ]}

22 2
1

0 2
, 1 1

4
1 2

1 1

1 2 1 1 1 2 2 1 1 2

( , )

1 ,

( , ) ( )

( ) ( ) ( )2

i j
jk i

k kki j k

i j
i jij i j A A d

k k A A dh

ξχ θλ θ λ
α α

φ θ ξ

κ κ κ θ ξ

κ κ θ ξ θ ξ θ ξ

+ −
−

Ω
= =Ω

+ −

+ −
Ω

+ −

Ω

 ∂∂=
∂ ∂ Α

+ − − + 

= +

+ − + + + 


 



ξ

ξ

θ

α

θ

α,

2

3 3 1 3 2 3
2
2

3 1 3 2
3 32

32

: (1 )(1 ) ,

(1 )(1 )
( ) , 1,2.

(1 )

h
n n

h
h

n n
m

mh

k k d

k k
d m

k

φ α α α α

α αχ α α
α

−

−

= + +

+ +
= =

+




(16) 

Here ,κ κ+ −  are the heat transfer coefficients on the 
surfaces ,+ −Ω Ω , respectively. 

Details of the construction of the problem (14) see [1]. 

IV. VIBRATION VARIATIONAL PROBLEM STATEMENT

We suppose that the harmonic loadings with angular
frequency ω  are applied to the thin shell 

( ) cos sin ,
( ) cos sin , (0, ].

c s

c s

l t l t l t
r t r t r t t T

ω ω
ω ω

= +
= + ∀ ∈

(17)

Then the approximate solutions of problem (14) can be 
looked for in the form of the following expansions: 

( , ) ( )cos ( ) sin ,
( , ) ( ) cos ( )sin ,

c s

c s

t t t
t t t

ω ω
ω ω

= +
= +

s α s α s α

θ α θ α θ α
(18)

where ( )cs α , ( )ss α , ( )cθ α , ( )sθ α  are the unknown 
amplitudes of vector of mechanical displacements and 
temperature respectively. 

Substituting expressions (17) and (18) into variational 
problem (15) and neglecting its initial conditions, we obtain 
the variational problem for force harmonic vibrations of 
thermo-elastic thin shell: 
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( )1

2

2

2

2 1, , , , ;
, , , } )

such that , , , }

( , ) ( , ) ( , )
( , ) , ,

( , ) ( , ) ( , )
( , )

given 0,

, ,

find {
{

(

h h

c c s s

c c s s

c s s s c s

c s c s

s c c c s c

s c s c

l l r r W Q

m a c
b l

m a c
b l

ω

ω ω

ω ω

ω

Ω Ω Ω

Ω

Ω Ω Ω

Ω

Ω

′ ′ ′ ′ ′ ′∈ = × = ×
= ∈ = ×
∀ ∈

− + +
− =< >

− + +
− =< >

>

Ξ

W Φ Φ Φ

s θ s θ W Φ Φ

v ξ v ξ W

s v s v s v

θ v v

s v s v s v

θ v v

ψ

, ) ( , ) ( , ) ,
( , ) ( , ) ( , ) , .
s c c c c s c c

c s s s s c s s

b r
b r

ω
ω ω

Ω Ω

Ω Ω Ω














+ Λ + =< >
− + Λ −Ξ =< >

θ ξ θ ξ ξ s ξ

θ ξ θ ξ ξ s ξ

(19)

Having added all the equations of the problem (19) we 
introduce the linear form :ωΧ → ℜW : 

( )1

, : , ,

, , ,
, , , ,

c s s c

c c s s

c c s s

l l

r r
ω

ω−

< Χ > =< > − < >

+ < > + < >
∀ ∈

w v v

ξ ξ

w v ξ v ξ W= ( )

(20)

and the bilinear form :ωΠ × → ℜW W  : 

[ ]
[ ]

[ ]
[ ]
[ ]
[ ]

[ ]

2

1

( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )
, , , } ,
, , ,

{
.

c s s c

c c s s

c s s c

c s s c

c s s c

c s s c

c c s s

c c s s

c c s s

m m

a a

c c

b b

b b

ω ω

ω

ω−

Ω Ω

Ω Ω

Ω Ω

Ω Ω

Ω Ω

Ω Ω

Ω Ω

Π = − −

+ +

+ −

+ +

− −

+ −

+ Λ + Λ
∀ = ∈
∀ ∈

Ξ Ξ

ψ w s v s v

s v s v

s v s v

θ ξ θ ξ

θ v θ v

ξ s ξ s

θ ξ θ ξ

s θ s θ W

w v ξ v ξ

ψ

W= ( )

(21)

Then variational problem for forced harmonic vibrations 
of the thermoviscoelastic thin wall body can be rewritten as 
follows: 

, ;
, , , } such that

( , ) ,

given

, , ,

0
nd

.

,
fi { c c s s

c c s s

ω

ω ω

ω ′ ′ ′< Χ >∈ = ×
 = ∈ = ×
Π =< Χ ∀

>

> ∈

w W Φ Φ

s θ s θ W Φ Φ

ψ w w w v ξ W

ψ

v ξ= ( )
(22)

V. WELL-POSEDNESS OF THE VARIATIONAL PROBLEM

Let us introduce a scalar product on the space W in the
following way: 

( )( , ) ( , ) ( , )
( , ) ( ,

{
)

, , , } ,
, , , .

c c s s

c c s s

c c s s

c c s s

a aΩ Ω

Ω Ω

= + +
Λ + Λ

∀ = ∈
∀ ∈

y w s v s v

θ ξ θ ξ

y s θ s θ W

w v ξ v ξ W= ( )

(23)

And we introduce a norm generated by the scalar product 

(23): 

2||| ||| (( , )) .= ∀ ∈y y y y W (24)

Then we can easily notice the following estimations: 

1 2

( , ) ( ||| |||) |||

) max{ ,

||| .

( , ,1, , }
c

c

M

M C
ω ω

ω ω ω ω−

Π ≤ ⋅

∈= ∀

y w y w

y w W
(25)

1

| , | ( || ||| ||| .

(

) ||

) max{ , .1}
s

s C

M

M
ω ωω

ω ω−

< ⋅

=

Χ > ≤ Χ

∀ ∈

w w

w W
(26)

Here and everywhere the symbol C – a positive constant 
value, independent on solutions of variational problem (22). 

Now for confirm W-ellipticity of the bilinear form 
:ωΠ × → ℜW W  we consider the expression for ( , )ωΠ w w  

[ ]
[ ]

[ ]
[ ]

1

1

12

( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

||| ,
,
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, , .
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c c s s

c c s s

c c s s

c c s s

a a

a a

ω ω

ω

ω

ω

η ω η ω ω ω

Ω Ω

Ω Ω

Ω Ω

Ω Ω

−

−

−

Π = +

+ Λ + Λ

+

+ Λ + Λ

∀

≥

≥ =
∈

w w s s s s

θ θ θ θ

s s s s

θ θ θ θ

w

w v ξ v ξ W= ( )

(27)

Since the statements (25)-(27) are proofed and they are 
actually the conditions of Lions-Lax-Milgram theorem, the 
following theorem is then correct: 

Theorem 6.1. For each 0ω >  the variational problem 
(22) has a unique solution ∈ψ W , which satisfies the
relation:

1
*||| )||| ( ( ) || || .sM ωη ω ω=≤ Χψ  (28)

VI. GALERKIN DISCRETIZATION

Standard Galerkin scheme was used for solving of 
variational problem (22). We chose some finite-dimensional 
subspace h h h= ×W Φ Φ , h ⊂Φ Φ , dim ( )h N h= < +∞W . 
Thus, the Galerkin-discretized variational problem (23) looks 
in the following way:  

, ,dim ,;
, ,

g
, } such tha

iven 0,
f t

( , .

nd

)

i

,

{
h

h ch c s sh hh h

h h

ω

ω ω

ω ′Χ ∈ ⊂ < +∞


= ∈
Π =< Χ > ∀ ∈

> W W W W

s θ s θ W

ψ φ φ φ W

ψ (29) 

We can say the problem (23) is well-posed same as the 
problem (29). In the space W we select some basic functions 

1{ }i
∞
=w . For each natural number 0m ≥ , 1 /h m=  a

sequence of approximation spaces hW  and operators of 
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orthogonal projection :h hPr →W W  are defined so that a 

set 1{ }m
i=w  is a basis of hW , and 

(( , )) 0 ,h h hPr− = ∀ ∈ ∀ ∈ψ ψ w ψ W w W . Now variational 
problem (22) is replaced by a sequence of the following 
problems:  

,
,dim ;

, , ,

given 0,

}

0,

find such that

( , )

{

, .

h

h ch c s sh hh h

h h

h
m

ω

ω ω

ω > >′Χ ∈
 ⊂ = < +∞
 = ∈
Π =< Χ > ∀ ∈

W

W W W

s θ s θ W

ψ

ψ

φ φ φ W

(30)

Theorem 5.1. Let be ∀ ∈ψ W  a solution of problem 
(22) with parameter 0ω > . Then a sequence of Galerkin
approximations h∀ ∈ψ W  is unambiguously defined by the 
solutions of the problems (30) and has the following 
properties:  

1||| ) in||| ( ||| 0f ||| ;h c
h

M hωη−
∀ ∈

− ≤ − ∀ >
w W

ψ ψ ψ w  (31) 

0
lim ||| ||| 0.h
h→

− =ψ ψ (32) 

Proof. The correctness can be done like in [7]. Sinse for the 
inequality (31) 

( , ) 0h hωΠ − = ∀ ∈ψ ψ w w W
and the estimation 

2||| ( , ) ( , )
( ) ||| ||

|||
||| ||| | .

h h h h

c h hM
a ω ω

ω
− ≤ Π − − = Π − −

≤ − − ∀ ∈
ψ ψ ψ ψ ψ ψ ψ ψ ψ w

ψ ψ ψ w w W

Taking into account the density of sequence of spaces { }hW  
in the separable space W : 

0
lim || ||| 0 .|
h

hPr
→

− = ∀ ∈ψ w w W (34)

Therefore, basing on the equality 

|||inf ||| ||| |||h
h

Pr
∀ ∈

− = −
w W

ψ w ψ ψ (35)

and inequality (31) we can conclude the correctness of (32), 
when 0ω > . 

VII. NUMERICAL EXPERIMENTS

Below we present some results of our numerical 
experiments on computations of eigenvalue problem for our 
semidiscreted model. We consider a circular cylindrical shell 
made of homogenous material with radius radius R=10 m 
and length L =10 m and which is under constant temperature. 

Young's modulus of shell material is equa to 1 Pa, Poisson's 
coefficient is 0.3, and mass density  is 1 kg/ m3.  

Boundary conditions  are following type: 

2 2 3 3 1 1

1 1 3 3 2 2

0, 0, ;
0 0, 8.

γ γ α α
γ γ α α π

= = = = = =
= = = = = =

u u on L
u u on

The first column of the Table  includes the number of 
quadratic finite element mesh ,  the second and third columns 

include the computed eigenvalues 
2 310ω ⋅  and their relative

errors δ  taking from [1]. Same our results are in the two last
columns of the Table. 

Mesh            ([1]) δ , %  δ , %

3×3 0,3305068 11,7 0,3583986 11,9

4×4 0,3024595 2,23 0,3401321 6,2

5×5 0,2974929 0,55 0,3288990 2,7

VIII. CONCLUSION

The partially variational problem for a thin wall body 
was constructed on base the dynamic coupled three-
dimensional problem. Under the assumptions about 
harmonic vibration with known angular frequency we have 
formulated the corresponding variational problem and then 
we proved its well posedness. These results shows that we 
can use well known finite element approximations for 
Sobolev spaces and obtain the convergence rate its errors. 
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