DC Field | Value | Language |
dc.contributor.author | Ambach, Daniel | |
dc.contributor.author | Ambach, Oleksandra | |
dc.coverage.temporal | 21-25 August 2018, Lviv | |
dc.date.accessioned | 2020-06-19T12:05:14Z | - |
dc.date.available | 2020-06-19T12:05:14Z | - |
dc.date.created | 2018-02-28 | |
dc.date.issued | 2018-02-28 | |
dc.identifier.citation | Ambach D. Forecasting the Oil Price with a Periodic Regression ARFIMA-GARCH Process / Daniel Ambach, Oleksandra Ambach // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 212–217. — (Dynamic Data Mining & Data Stream Mining). | |
dc.identifier.isbn | © Національний університет „Львівська політехніка“, 2018 | |
dc.identifier.isbn | © Національний університет „Львівська політехніка“, 2018 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/52493 | - |
dc.description.abstract | This article provides a new periodic time series
model to predict the oil price. Moreover, the approach discusses
short-term forecasting of the oil price. Hence, we discuss the
model fit and the out-of-sample performance. Finally, we derive
further enhancements and improvements for further research. | |
dc.format.extent | 212-217 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Data stream mining and processing : proceedings of the IEEE second international conference, 2018 | |
dc.relation.uri | http://ena.lp.edu.ua | |
dc.subject | long-memory | |
dc.subject | forecasting | |
dc.subject | oil-price | |
dc.subject | ARFIMA | |
dc.subject | periodic model | |
dc.title | Forecasting the Oil Price with a Periodic Regression ARFIMA-GARCH Process | |
dc.type | Conference Abstract | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2018 | |
dc.contributor.affiliation | Department for Data Science smava GmbH Berlin | |
dc.contributor.affiliation | FirmenCenter Grundung und Nachfolge Berliner Sparkasse | |
dc.format.pages | 6 | |
dc.identifier.citationen | Ambach D. Forecasting the Oil Price with a Periodic Regression ARFIMA-GARCH Process / Daniel Ambach, Oleksandra Ambach // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 212–217. — (Dynamic Data Mining & Data Stream Mining). | |
dc.relation.references | [1] Akaike, H. (1974), A new look at the statistical model identification, Automatic Control, IEEE Transactions on, 19(6), pp. 716–723. | |
dc.relation.references | [2] Baillie, R.T. (1996), Long memory processes and fractional integration in econometrics, Journal of econometrics, 73(1), pp. 5–59. | |
dc.relation.references | [3] Baillie, R.T., Chung, C.F., and Tieslau, M.A. (1996), Analysing inflation by the fractionally integrated ARFIMA–GARCH model, Journal of applied econometrics, pp. 23–40. 216 Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua | |
dc.relation.references | [4] Bollerslev, T. (1986), Generalized autoregressive conditional heteroskedasticity, Journal of econometrics, 31(3), pp. 307–327. | |
dc.relation.references | [5] Box, G.E. and Pierce, D.A. (1970), Distribution of residual autocorrelations in autoregressive-integrated moving average time series models, Journal of the American statistical Association, 65(332), pp. 1509–1526. | |
dc.relation.references | [6] Breusch, T.S. and Pagan, A.R. (1979), A simple test for heteroscedasticity and random coefficient variation, Econometrica: Journal of the Econometric Society, pp. 1287–1294. | |
dc.relation.references | [7] Brockwell, P.J. and Davis, R.A. (2009), Time series: theory and methods, Springer, New York. | |
dc.relation.references | [8] Brockwell, P.J. and Davis, R.A. (2013), Time series: theory and methods, Springer Science & Business Media. | |
dc.relation.references | [9] Durbin, J. and Watson, G.S. (1951), Testing for serial correlation in least squares regression. II, Biometrika, 38(1/2), pp. 159–177. | |
dc.relation.references | [10] Engle, R.F. (1982), Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica: Journal of the Econometric Society, pp. 987–1007. | |
dc.relation.references | [11] Fahrmeir, L., Kneib, T., and Lang, S. (2007a), Regression: Modelle, Methoden und Anwendungen, Springer-Verlag. | |
dc.relation.references | [12] Fahrmeir, L., Kunstler, R., Pigeot, I., and Tutz, G. (2007b), ¨ Statistik: Der Weg zur Datenanalyse, Springer-Verlag. | |
dc.relation.references | [13] Fisher, T.J. and Gallagher, C.M. (2012), New weighted portmanteau statistics for time series goodness of fit testing, Journal of the American Statistical Association, 107(498), pp. 777–787. | |
dc.relation.references | [14] Goldfeld, S.M. and Quandt, R.E. (1965), Some tests for homoscedasticity, Journal of the American statistical Association, 60(310), pp. 539–547. | |
dc.relation.references | [15] Greenwald, B.C., Stiglitz, J.E., and Weiss, A. (1984), Informational imperfections in the capital market and macro-economic fluctuations. | |
dc.relation.references | [16] Haslett, J. and Raftery, A.E. (1989), Space-time modelling with longmemory dependence: Assessing Ireland’s wind power resource, Applied Statistics, 30(1), pp. 1–50. | |
dc.relation.references | [17] Ishida, I., Watanabe, T., et al. (2009), Modeling and Forecasting the Volatility of the Nikkei 225 realized Volatility using the ARFIMAGARCH model, Global COE Hi-Stat Discussion Paper, 32. | |
dc.relation.references | [18] Kalkman, J., Pfeiffer, W., and Pereira, S. (2013), Are we running out of oil? | |
dc.relation.references | [19] Kane, I.L. and Yusof, F. (2013), Assessment of Risk of Rainfall Events with a Hybrid of ARFIMA-GARCH, Modern Applied Science, 7(12), p. 78. | |
dc.relation.references | [20] Koopman, S.J., Ooms, M., and Carnero, M.A. (2007), Periodic seasonal Reg-ARFIMA–GARCH models for daily electricity spot prices, Journal of the American Statistical Association, 102(477), pp. 16–27. | |
dc.relation.references | [21] Leite, A., Rocha, A., and Silva, M. (2009), Long memory and volatility in HRV: an ARFIMA-GARCH approach, Computers in Cardiology, 2009, IEEE, pp. 165–168. | |
dc.relation.references | [22] Mandelbrot, B.B. and Van Ness, J.W. (1968), Fractional Brownian motions, fractional noises and applications, SIAM review, 10(4), pp. 422–437. | |
dc.relation.references | [23] Palm, F.C. (1996), 7 GARCH models of volatility, Handbook of statistics, 14, pp. 209–240. | |
dc.relation.references | [24] Schwarz, G. et al. (1978), Estimating the dimension of a model, The annals of statistics, 6(2), pp. 461–464. | |
dc.relation.references | [25] Shapiro, S.S. and Wilk, M.B. (1965), An analysis of variance test for normality (complete samples), Biometrika, 52(3/4), pp. 591–611. | |
dc.relation.references | [26] Shumway, R.H. and Stoffer, D.S. (2010), Time series analysis and its applications: with R examples, Springer Science & Business Media. | |
dc.relation.references | [27] White, H. (1980), A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity, Econometrica: Journal of the Econometric Society, pp. 817–838. | |
dc.relation.referencesen | [1] Akaike, H. (1974), A new look at the statistical model identification, Automatic Control, IEEE Transactions on, 19(6), pp. 716–723. | |
dc.relation.referencesen | [2] Baillie, R.T. (1996), Long memory processes and fractional integration in econometrics, Journal of econometrics, 73(1), pp. 5–59. | |
dc.relation.referencesen | [3] Baillie, R.T., Chung, C.F., and Tieslau, M.A. (1996), Analysing inflation by the fractionally integrated ARFIMA–GARCH model, Journal of applied econometrics, pp. 23–40. 216 Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua | |
dc.relation.referencesen | [4] Bollerslev, T. (1986), Generalized autoregressive conditional heteroskedasticity, Journal of econometrics, 31(3), pp. 307–327. | |
dc.relation.referencesen | [5] Box, G.E. and Pierce, D.A. (1970), Distribution of residual autocorrelations in autoregressive-integrated moving average time series models, Journal of the American statistical Association, 65(332), pp. 1509–1526. | |
dc.relation.referencesen | [6] Breusch, T.S. and Pagan, A.R. (1979), A simple test for heteroscedasticity and random coefficient variation, Econometrica: Journal of the Econometric Society, pp. 1287–1294. | |
dc.relation.referencesen | [7] Brockwell, P.J. and Davis, R.A. (2009), Time series: theory and methods, Springer, New York. | |
dc.relation.referencesen | [8] Brockwell, P.J. and Davis, R.A. (2013), Time series: theory and methods, Springer Science & Business Media. | |
dc.relation.referencesen | [9] Durbin, J. and Watson, G.S. (1951), Testing for serial correlation in least squares regression. II, Biometrika, 38(1/2), pp. 159–177. | |
dc.relation.referencesen | [10] Engle, R.F. (1982), Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica: Journal of the Econometric Society, pp. 987–1007. | |
dc.relation.referencesen | [11] Fahrmeir, L., Kneib, T., and Lang, S. (2007a), Regression: Modelle, Methoden und Anwendungen, Springer-Verlag. | |
dc.relation.referencesen | [12] Fahrmeir, L., Kunstler, R., Pigeot, I., and Tutz, G. (2007b), ¨ Statistik: Der Weg zur Datenanalyse, Springer-Verlag. | |
dc.relation.referencesen | [13] Fisher, T.J. and Gallagher, C.M. (2012), New weighted portmanteau statistics for time series goodness of fit testing, Journal of the American Statistical Association, 107(498), pp. 777–787. | |
dc.relation.referencesen | [14] Goldfeld, S.M. and Quandt, R.E. (1965), Some tests for homoscedasticity, Journal of the American statistical Association, 60(310), pp. 539–547. | |
dc.relation.referencesen | [15] Greenwald, B.C., Stiglitz, J.E., and Weiss, A. (1984), Informational imperfections in the capital market and macro-economic fluctuations. | |
dc.relation.referencesen | [16] Haslett, J. and Raftery, A.E. (1989), Space-time modelling with longmemory dependence: Assessing Ireland’s wind power resource, Applied Statistics, 30(1), pp. 1–50. | |
dc.relation.referencesen | [17] Ishida, I., Watanabe, T., et al. (2009), Modeling and Forecasting the Volatility of the Nikkei 225 realized Volatility using the ARFIMAGARCH model, Global COE Hi-Stat Discussion Paper, 32. | |
dc.relation.referencesen | [18] Kalkman, J., Pfeiffer, W., and Pereira, S. (2013), Are we running out of oil? | |
dc.relation.referencesen | [19] Kane, I.L. and Yusof, F. (2013), Assessment of Risk of Rainfall Events with a Hybrid of ARFIMA-GARCH, Modern Applied Science, 7(12), p. 78. | |
dc.relation.referencesen | [20] Koopman, S.J., Ooms, M., and Carnero, M.A. (2007), Periodic seasonal Reg-ARFIMA–GARCH models for daily electricity spot prices, Journal of the American Statistical Association, 102(477), pp. 16–27. | |
dc.relation.referencesen | [21] Leite, A., Rocha, A., and Silva, M. (2009), Long memory and volatility in HRV: an ARFIMA-GARCH approach, Computers in Cardiology, 2009, IEEE, pp. 165–168. | |
dc.relation.referencesen | [22] Mandelbrot, B.B. and Van Ness, J.W. (1968), Fractional Brownian motions, fractional noises and applications, SIAM review, 10(4), pp. 422–437. | |
dc.relation.referencesen | [23] Palm, F.C. (1996), 7 GARCH models of volatility, Handbook of statistics, 14, pp. 209–240. | |
dc.relation.referencesen | [24] Schwarz, G. et al. (1978), Estimating the dimension of a model, The annals of statistics, 6(2), pp. 461–464. | |
dc.relation.referencesen | [25] Shapiro, S.S. and Wilk, M.B. (1965), An analysis of variance test for normality (complete samples), Biometrika, 52(3/4), pp. 591–611. | |
dc.relation.referencesen | [26] Shumway, R.H. and Stoffer, D.S. (2010), Time series analysis and its applications: with R examples, Springer Science & Business Media. | |
dc.relation.referencesen | [27] White, H. (1980), A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity, Econometrica: Journal of the Econometric Society, pp. 817–838. | |
dc.citation.conference | IEEE second international conference "Data stream mining and processing" | |
dc.citation.spage | 212 | |
dc.citation.epage | 217 | |
dc.coverage.placename | Львів | |
Appears in Collections: | Data stream mining and processing : proceedings of the IEEE second international conference
|