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Abstract—This article provides a new periodic time series
model to predict the oil price. Moreover, the approach discusses
short-term forecasting of the oil price. Hence, we discuss the
model fit and the out-of-sample performance. Finally, we derive
further enhancements and improvements for further research.
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I. INTRODUCTION

Supply and demand are two major forces that drive the

equilibrium on the market. Foreign exchange rates, interest

rates, stock prices are the instruments that play an important

role in this process. Though in the modern world there is one

more important variable that determines the equilibrium on the

market - the oil price. An oil price is a commodity traded on a

global market. The crucial thing about it is that in contrast to

the interest rates, for example, which have mostly an economic

influence, the oil price affects us all being the principle source

of the energy and pricing coal and natural gas.

Moreover, as we know the oil price is captured in the

oil future contracts. An oil futures contract is described as

a binding agreement which provides a the right to purchase

a barrel oil at a predefined price on a predefined date in the

future. Therefore, the buyer and the seller are obliged to make

a deal according to the contract. It means that that the oil

prices are manually agreed and accordingly predicted. Things

become more difficult with the speculations on the oil market

and cyclical trends. It turns out that regardless of how the

price on the market is determined, based on its use in fuels

and countless consumer goods, the oil price is inevitably in

high demand for the future [18].

The aim of our paper is related to the successful appli-

cation of a periodic regression model and residual process

that follows a autoregressive fractional integrated moving

average process with generalised autoregressive conditional

heteroscedasticity (ARFIMA-GARCH) process to predict the

oil price. In recent literature we find on the one-hand different

ideas to model the oil price and on the other-hand we find

different applications of the ARFIMA-GARCH model. There-

fore, we use the properties of our proposed process to model

and predict the oil price as good as possible. [3] analyse infla-

tion by the fractionally integrated ARFIMA-GARCH model.

They consider the application of long-memory processes to

describing the inflation for ten countries. It is proved that for

three high inflation economies there is evidence that the mean

and the volatility of inflation interact in a way that is consis-

tent with the Friedman hypothesis. [17] use the ARFIMA-

GARCH Model and apply it to the realized volatility and

the continuous sample path variations constructed from high-

frequency Nikkei 225 data. [20] consider a periodic seasonal

Reg-ARFIMA-GARCH model for daily electricity spot prices.

This approach depicts periodic extensions of dynamic long-

memory regression models with autoregressive conditional

heteroscedastic errors. There model is accurate to analyse and

predict the daily spot prices. [21] sufficiently explore the heart

rate variability data with its stationary characteristics, long

range correlations and instantiations volatility with the help of

ARFIMA GARCH model. Another application is presented

by [19]. They assess the persistence dependence of rainfall

time series of Chui Chak, a station in Peninsular Malaysia that

observed the highest rainfall event for the period 1975-01-01

to 2008-12-31.

The theory and the application of the periodic regression

with ARFIMA-GARCH process is discussed in this paper.

There is an evidence in the literature that there exist character-

istics in the data which enables the use of the aforementioned

model. For example we find cyclic behaviour throughout the

trading year, high autocorrelation which is related to the sea-

sonal behaviour and use of oil, conditional heteroscedasticity

related to the volatility of the price process and heavy tailed

residuals modelled by a t-distribution. Therefore, we will

discuss the theoretical background and the modelling process.

After that we will apply the model to the in-sample data, and

if it fits well, we will try to forecast the out-of-sample results.

This article starts with a description of an ARFIMA-

GARCH in Section II. Hereafter, the theory of long memory

process, GARCH process, model fit and model diagnostics

is presented. Section III discusses the application of the

aforementioned model to the data set and presents in-sample

results. Section IV provides the out-of sample results and

discusses improvements and finally V concludes.
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II. THEORETICAL BACKGROUND

The oil price (Pt) is from the economic sense an important

indicator. Figure 1 shows all observations from 1986-01-02

to 2017-01-09 of the West Texas Intermediate (WTI) Cushing

oil price. The oil price incorporates different properties. It is

reasonable to assume that the oil price has periodic as well

as autoregressive disturbances. Moreover, the variance process

will show conditional heteroscedasticity. Therefore, we will

apply the following model to the oil price

Pt = µ+ PeriodicReg + ǫt, (1)

where µ is an intercept and ǫt is the residual process that

follows an autoregressive fractional integrated moving aver-

age process with generalised autoregressive conditional het-

eroscedasticity (ARFIMA-GARCH). Furthermore, we model

the periodic or seasonal structure by periodic sine and cosine

functions which are

PeriodicReg =

(

acos cos

(

2πt

P

)

+ asin sin

(

2πt

P

))

, (2)

where P is the period which is the basis of the periodic

functions. Here we suggest that the period could be related

to an annual cycle.

Fig. 1. Price of the West Texas Intermediate (WTI) Cushing, full sample
(left)

A. the long-memory process

We introduce the ARFIMA-GARCH model to describe the

autocorrelation and conditional heteroscedasticity. The resid-

ual process {ǫt} foremost as ARFIMA(p,d,q)-GARCH(P,Q)

model in the following way

ǫt ≡ φ(B)∇dXt = θ(B)ηt (3)

ηt = σtτt, (4)

σ2
t = α0 +

q
∑

i=1

αiη
2
t−i +

p
∑

j=1

γjσ
2
t−j , (5)

τt ∼ F here we take the t-distribution. (6)

Obviously equation (3) describes a typical ARFIMA(p,d,q)

process and (4) depicts a GARCH(P,Q) process. Quite fre-

quently long memory processes are considered while ana-

lyzing environmental time series [16]. In contrast an ARMA

process denoted as Ut is considered as a short-memory process

because the covariance of U1 and U1+k is decreasing fast as k

converges to ∞. [7] explain that the autocorrelation function

of Ut is geometrically bounded and therefore shows a short

dependence structure. In contrast a long memory process has

an autocorrelation function for which ρ(k) ∼ Ck2d−1 as

k → ∞, where C is a constant with C 6= 0 and d < 0.5
[7]. [16] use the ARFIMA model to predict the wind speed in

Ireland.

Defining for any real number of d and d > −1, the

difference operator ∇d = (1−B)d by the binomial expansion:

∇
d = (1−B)d =

∞
∑

k=0

(k − d− 1)!

k!(−d− 1)!
Bk,

where B is the backward shift operator BvXt = Xt−v .

In the continuous case [22] introduce the fractional Brow-

nian motion. In the discrete setting the fractional integrated

noise are the following difference equations ∇dXt = Zt,

where {Zt} ∼ WN(0, σ2) and d ∈ (−0.5, 0.5) (see [7]).

The ARFIMA(p,d,q) and GARCH(P,Q) process is a combi-

nation of an ARFIMA and a GARCH model. The contribution

of a process which has a fractionally integrated conditional

mean and generalized autoregressive conditional heteroscedas-

ticity is to cover the effects that are not probably modelled

by short time memory and a constant variance. An initial ap-

proach is given in [15] wherein ARMA-ARCH model explains

macroeconomic time series. [2] used an ARFIMA-GARCH

model to describe inflation rates. Moreover, they develop an

approximate maximum likelihood estimate of an ARFIMA-

GARCH process. The ARCH model [10] and GARCH model

[4] are invented to model financial time series. The combined

ARFIMA-GARCH model is given by

After discussing different time series models for the residual

process we have to apply them to the data set and proceed

with the parameter estimation and diagnostic checking. The

next Section provides such results as well as the estimation of

the complete univariate time series model.

B. Parameter estimation and model selection

The estimation of the complete model could be done in two

different ways. On the one-hand it is possible to use a two

step approach, where first the mean and hereafter the variance

is estimated. Hence, on the other-hand the whole model is

estimated in a single maximum likelihood approach. However,

the exact likelihood is unknown, therefore we consider the

conditional (quasi) maximum likelihood. For deriving the

quasi maximum likelihood we can use the explanations and

derivations of [7] and [26].

Finally, we assume that the residual process {τt} has to

be independent and equally distributed with {τt} ∼ t. The t-

distribution provides better results related to the tail behaviour

of the residuals. The estimated periodic regression model with
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ARFIMA-GARCH residual process is evaluated by means

of the in-sample and the out-of-sample performance. [11]

describes the R-square R2 as a possible criterion for the

in-sample performance of a regression model. Unfortunately,

while using correlated data, we do not obtain an unbiased

value of R2. Hence, we can not interpret the R2 so easily. One

alternative is related to the goodness of the model. Therefore,

we calculate the autocorrelation function ACF and the partial

autocorrelation function.

The autocorrelation function can be used for two purposes.

The first reason is to detect non-randomness in data. Moreover,

we identify an appropriate time series model if the data

are not random. If we want to identify the correct model

order of an autoregressive model and figure out whether we

observe further autocorrelation, we have to consider the partial

autocorrelation function as well. These functions are also

useful for the model diagnostic, if they provide evidence for

further autocorrelation, we observe that the goodness of our

model is not sufficient.

[1] proposes to measure the goodness of fit for a certain

model by balancing the error of the fitted model against the

number of parameters in the estimated model. The Akaike

information criterion (AIC) is given by [1]

AIC(k) = ln σ̂(k)2 + k
2

n
, (7)

where σ̂(k)2 is the estimated variance, k is the number of

all parameters in the complete model and n is the sample

size. Another information criterion is the Bayesian information

criterion (BIC). [24] propose the BIC which has a larger

punishing term. The BIC is given by

BIC(k) = ln σ̂(k)2 + k
lnn

n
(8)

Both information criteria are appropriate to choose the best

model order of our ARFIMA-GARCH model, but they could

select a different model order in the end. The reason for such

a result is related to the punishing terms k 2/n and k lnn/n,

which are different. We calculate the information criterion for

each model order of the ARFIMA-GARCH process. Hence,

the AIC and the BIC can be derived by means of the likelihood

function instead of σ̂(k)2. The optimal model order minimizes

the AIC and BIC.

The optimal model provides necessary information for the

in-sample performance, but in addition, we are able to predict

different unobserved values. [7] discusses the prediction of

ARMA, ARFIMA and GARCH model.

III. ANALYSING THE OIL PRICE AND THE GOODNESS OF

FIT

The regression model with ARFIMA-GARCH residual pro-

cess with t-distribution given by (1) - (3) is applied to our oil

price data set of the West Texas Intermediate (WTI). Figure

2 shows a part of the data set which is modelled with the

aforementioned approach

Fig. 2. Price of the West Texas Intermediate (WTI) Cushing

The data set is provided by “U.S. Energy Information

Administration” and the investigated time horizon reaches

from 2005-06-17 till 2016-03-29. The regressors of the model

are given by periodic variables.

Pt = µ+ PeriodicReg + ǫt, (9)

PeriodicReg =

(

acos cos

(

2πt

252

)

+ asin sin

(

2πt

252

))

,(10)

where the period is 252, which is related to an average

trading year of 252 days. The price process Pt has to be anal-

ysed according to the autocorrelation structure and to find het-

eroscedastic effects. Figure 3 provides a huge autocorrelation

structure and the PACF selects a positive autocorrelation for

the first lag and some more autocorrelation for the following

lags.

Furthermore, Figure 5 depicts a high presence of conditional

heteroscedasticity. From the aforementioned findings, we may

assume that the proposed periodic regression model with

ARFIMA-GARCH residuals are appropriate to capture the

main characteristics of the WTI oil price. Subsequently, we fit

the model to our data set. Table III shows the model estimation

results. The derived model order is related to the smallest AIC

and BIC and significance of the parameters. The majority of

the parameters are significant, but some GARCH parameters

are not. Moreover, the periodic regressor which is modelled

with the sine function is only significant to a significance level

of 0.1, which is acceptable in practice.

The obtained estimation results seem to be sufficient, but

we have to discuss the goodness of fit. The data set has to

be uncorrelated, homoscedastic and the remaining residuals

should follow the t-distribution. The ACF of the residuals does

not provide any correlation structure. Furthermore, we detect

only for the first lag of the squared standardized residuals

a remaining presence of autocorrelation. In addition we can

observe that the Ljung and Box test points in the same

direction. The test is applied to the residuals as well as to the

squared standardised residuals. Moreover, a weighted ARCH-

LM test for detecting further conditional heteroscedasticity is
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Fig. 3. Autocorrelation function and partial autocorrelation function of the
data set.

Fig. 4. Autocorrelation function of the squared observations.

applied. [13] propose the test which is much better for the

distribution of the statistics of the values from the estimated

models. The ARCH-LM test is a weighted portmanteau test.

Under the null hypothesis it is assumed that the ARCH process

is fitted accurately. The weighted ARCH-LM test does not

reject the null hypothesis and thus we are able to conclude,

that there is no further improvement of the ARFIMA-GARCH

model order.

Figure 6 depicts the Quantile-quantile (Q-Q) plot, which

TABLE I
PARAMETER ESTIMATION OF THE OIL PRICE, WHERE THE BOLDED VALUES

PROVIDE SIGNIFICANCE GIVEN A SIGNIFICANCE LIMIT OF α = 0.05

Estimate Std. Error t value Pr(> |t|)
Regression coefficients

µ 55.301296 1.768863 31.26376 0.000000

acos 3.342449 1.544597 2.16396 0.030467

asin 2.566762 1.509088 1.70087 0.088967∗∗

ARFIMA parameters

d 0.099415 0.031782 3.12802 0.001760

φ1 1.741240 0.000271 6419.64884 0.000000

φ2 -0.672959 0.000128 -5247.05016 0.000000

φ3 -0.053276 0.003060 -17.41137 0.000000

φ4 -0.015083 0.003355 -4.49510 0.000007

θ1 -0.876162 0.017276 -50.71414 0.000000

GARCH parameters

α0 0.043254 0.016544 2.61447 0.008937

α1 0.081730 0.017577 4.64975 0.000003

γ1 0.311167 0.269917 1.15282 0.248983
γ2 0.217017 0.285986 0.75884 0.447949
γ3 0.372788 0.174081 2.14146 0.032237

df 9.221080 1.410838 6.53589 0.000000

Diagnostic checking Statistics
AIC 3.6526
BIC 3.6851

shows that our considered t-distribution is a good choice for

the heavy tailed residuals. This argument is supported by the

Pearson chi-squared goodness of fit test.

Finally, we are able to sum up the in-sample goodness

of fit. It turns out, that the model provides good in-sample

performance. The model assumptions are fulfilled, Only the

first lag of our squared standardized residuals shows a minor

presence of autocorrelation. The next step is related to the

out-of-sample forecast.

IV. FORECASTING PERFORMANCE OF THE MODEL

The Figure 7 below shows the oil prices in 2016 and our

forecast up to 21 trading day. The quality of the forecast is

not completely satisfying as the forecast does not reflect the

cycle behaviour. Even the in-sample results are not completely

satisfying. We observe that the 99%-confidence intervals are

too narrow. Moreover, the realised values in future and our

forecasts are different. Thereby the mean changes, but the

periodic or cyclic behaviour is not captured accurately. The

99%-prediction interval is relatively narrow, which is a good

result, but the observations lie outside the bounds. Neverthe-

less, the shortcomings of the forecast do not provide a good

model result. It is obvious, that we need further improvements

of the applied model. One possibility is related to the periodic

behaviour which has to be captured by different and more

periodic regressors. Furthermore, we can conclude that the

process includes different changes which are suitable captured

by a non-linear model.

V. CONCLUSION

The oil price is a very important indicator for the economy

in the world. We need oil for everything so the development

of the price is very important. We can find a direct correlation

between the cost of gasoline or airplane fuel to the price
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Fig. 5. Autocorrelation function of the standardised residuals and of the
squared residuals.

of transporting goods and people. A drop in fuel prices

means lower transport costs and cheaper airline tickets, lower

transportation costs for apples from Italy or furniture from

China. Therefore, we discuss the application of a periodic

regression model with ARFIMA-GARCH residual process to

model and predict the oil price.

The aforementioned model captures the long-memory and

the conditional heteroscedasticity. In addition we include two

periodic regressors. The model provides some advantages, but

Fig. 6. Quantile-quantile plot of the residuals and the theoretical t-distribution.

Fig. 7. Oil price forecasting for 21 future observations.

it fails to capture the periodicity in a good way. Moreover,

the model shows for the first lag of the squared standardised

residuals a remaining presence of correlation, which is not

satisfying at all.

The model should be extended. The volatility process could

be modelled by an asymmetric or threshold GARCH model.

Moreover, it might be useful that the power of the volatility

is changed, so that extreme values in the volatility do not

have such a big impact. The periodic regression part of the

model might be extended by a stacked regularised model

that captures the non-linear disturbances. The use of different

periodic functions and different periods as basis has a huge

influence on the structure of the model. Finally, we detect a

suitable model for the oil price which provides much space

for further research.
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