Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52484
Title: Data Stream Online Clustering Based on Fuzzy Expectation-Maximization Approach
Authors: Deineko, Anastasiia
Zhernova, Polina
Gordon, Boris
Zayika, Oleksandr
Pliss, Iryna
Pabyrivska, Nelya
Affiliation: Kharkiv National University of Radio Electronics
Lviv Polytechnic National University
Tallinn University of Technology
Bibliographic description (Ukraine): Data Stream Online Clustering Based on Fuzzy Expectation-Maximization Approach / Anastasiia Deineko, Polina Zhernova, Boris Gordon, Oleksandr Zayika, Iryna Pliss, Nelya Pabyrivska // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 171–176. — (Dynamic Data Mining & Data Stream Mining).
Bibliographic description (International): Data Stream Online Clustering Based on Fuzzy Expectation-Maximization Approach / Anastasiia Deineko, Polina Zhernova, Boris Gordon, Oleksandr Zayika, Iryna Pliss, Nelya Pabyrivska // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 171–176. — (Dynamic Data Mining & Data Stream Mining).
Is part of: Data stream mining and processing : proceedings of the IEEE second international conference, 2018
Conference/Event: IEEE second international conference "Data stream mining and processing"
Issue Date: 28-Feb-2018
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Львів
Temporal Coverage: 21-25 August 2018, Lviv
Keywords: big data
dynamic data mining
data stream mining
computational intelligence
EM-algorithm
fuzzy clustering
Kohonen’s self-learning
soft clustering
Number of pages: 6
Page range: 171-176
Start page: 171
End page: 176
Abstract: In the paper the online fuzzy clustering recurrent procedure has been introduced that allows the forming of hyperellipsoidal clusters with an arbitrary orientation of the axes is proposed. Such clustering system is the generalization of a number of known algorithms, it is intended to solve tasks within the general problems of Data Stream Mining (DSM) and Dynamic Data Mining (DDM), when information is sequentially fed to processing in online mode.
URI: https://ena.lpnu.ua/handle/ntb/52484
ISBN: © Національний університет „Львівська політехніка“, 2018
© Національний університет „Львівська політехніка“, 2018
Copyright owner: © Національний університет “Львівська політехніка”, 2018
URL for reference material: http://www.ics.uci.edu/~mlearn/MLRepository.html
References (Ukraine): [1] C. C. Aggarwal, Data Mining. Cham: Springer, Int. Publ., Switzerland, 2015.
[2] M. Bramer, Principles of Data Mining. Springer-Verlag London, 2016.
[3] A. Bifet, R. Gavaldà, G. Holmes, and B. Pfahringer, Machine Learning for Data Streams with Practical Examples in MOA. The MIT Press, 2018.
[4] F. Höppner, F. Klawonn, R. Kruse, and T. Runkler, Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition. John Wiley & Sons. Chichester, 1999.
[5] C. C. Aggarwal and C. K. Reddy, Data Clustering. Algorithms and Application. Boca Raton: CRC Press, 2014.
[6] R. Xu and D. C. Wunsch, Clustering. IEEE Press Series on Computational Intelligence. Hoboken, NJ: John Wiley & Sons, Inc., 2009.
[7] A. Bifet, Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams, IOS Press, 2010.
[8] J. Kacprzyk, and W. Pedrycz, Springer Handbook of Computational Intelligence, Berlin Heidelberg: Springer, Verlag, 2015.
[9] K.-L. Du and M. N. S. Swamy, Neural Networks and Statistical Learning. London: Springer-Verlag, 2014.
[10] J.-C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, N.Y.: Plenum Press, 1981.
[11] Ye. V. Bodyanskiy, A. O. Deineko, and Y. V. Kutsenko, “On-line kernel clustering based on the general regression neural network and T. Kohonen’s self-organizing map,” Automatic Control and Computer Sciences, 51(1), pp. 55-62, 2017.
[12] J. Keller, J. C. Bezdek, R. Krishnapuram and N. Pal, Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. The Handbook of Fuzzy Sets. Kluwer, Dordrecht, Netherlands: Springer, vol. 4, 1999.
[13] B. Quost, and T. Denœux “Clustering and classification of fuzzy data using the fuzzy EM algorithm,” Fuzzy Sets and Systems. vol. 286, pp. 134-156, March 2016.
[14] J. Yu, Ch. Chaomu, and M. S. Yang, “On convergence and parameter selection of the EM and DA-EM algorithms for Gaussian mixtures,” Pattern Recognition, vol. 77, pp. 188-203, May 2018.
[15] X. L. Meng and D. B. Rubin, “Maximum likelihood estimation via the ECM algorithm:a general framework,” Biometrica, vol. 80, рр. 267-278, 1993.
[16] Ye. Bodyanskiy, “Computational intelligence techniques for data analysis,” Lecture Notes in Informatics, Bonn: GI, pp. 15 – 36, 2005.
[17] Ye. Gorshkov, V. Kolodyaznhiy and Ye., Bodyanskiy, “New recursive learning algorithms for fuzzy Kohonen clustering network,” 17th Int. Workshop on Nonlinear Dynamics of Electronic Systems, Rapperswil, Switzerland, pp. 58-61, 2009.
[18] L. Jain and C. Mumford, Computational Intelligence, Collaboration, Fuzzy and Emergence, Berlin: Springer, Vergal, 2009.
[19] S. Osowski, Sieci neuronowe do przetwarzania informacji, Warszawa: Oficijna Wydawnicza Politechniki Warszawskiej, 2006.
[20] A. B. Geva and I. Gath “Unsupervised optimal fuzzy clustering,” Pattern Analysis and Machine Intelligence, vol. 2, n.7, pp. 773-787, 1989.
[21] T. Kohonen, Self-Organizing Maps. Berlin: Springer-Verlag, 1995.
[22] Ye. Bodyanskiy, A. Deineko, Y. Kutsenko and O. Zayika, “Data streams fast EM-fuzzy clustering based on Kohonen`s self-learning,” 1th IEEE International Conference on Data Stream Mining & Processing (DSMP 2016), Lviv, Ukrane, pp. 309-313, 2016.
[23] A. B. Geva, “Clustering as a basis for evolving neuro-fuzzy modeling,” Evolving Systems, pp. 59-71, 2010.
[24] UCI Repository of machine learning databases. CA: University of California, Department of Information and Computer Science. [Online]. Available: http://www.ics.uci.edu/~mlearn/MLRepository.html
References (International): [1] C. C. Aggarwal, Data Mining. Cham: Springer, Int. Publ., Switzerland, 2015.
[2] M. Bramer, Principles of Data Mining. Springer-Verlag London, 2016.
[3] A. Bifet, R. Gavaldà, G. Holmes, and B. Pfahringer, Machine Learning for Data Streams with Practical Examples in MOA. The MIT Press, 2018.
[4] F. Höppner, F. Klawonn, R. Kruse, and T. Runkler, Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition. John Wiley & Sons. Chichester, 1999.
[5] C. C. Aggarwal and C. K. Reddy, Data Clustering. Algorithms and Application. Boca Raton: CRC Press, 2014.
[6] R. Xu and D. C. Wunsch, Clustering. IEEE Press Series on Computational Intelligence. Hoboken, NJ: John Wiley & Sons, Inc., 2009.
[7] A. Bifet, Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams, IOS Press, 2010.
[8] J. Kacprzyk, and W. Pedrycz, Springer Handbook of Computational Intelligence, Berlin Heidelberg: Springer, Verlag, 2015.
[9] K.-L. Du and M. N. S. Swamy, Neural Networks and Statistical Learning. London: Springer-Verlag, 2014.
[10] J.-C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, N.Y., Plenum Press, 1981.
[11] Ye. V. Bodyanskiy, A. O. Deineko, and Y. V. Kutsenko, "On-line kernel clustering based on the general regression neural network and T. Kohonen’s self-organizing map," Automatic Control and Computer Sciences, 51(1), pp. 55-62, 2017.
[12] J. Keller, J. C. Bezdek, R. Krishnapuram and N. Pal, Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. The Handbook of Fuzzy Sets. Kluwer, Dordrecht, Netherlands: Springer, vol. 4, 1999.
[13] B. Quost, and T. Denœux "Clustering and classification of fuzzy data using the fuzzy EM algorithm," Fuzzy Sets and Systems. vol. 286, pp. 134-156, March 2016.
[14] J. Yu, Ch. Chaomu, and M. S. Yang, "On convergence and parameter selection of the EM and DA-EM algorithms for Gaussian mixtures," Pattern Recognition, vol. 77, pp. 188-203, May 2018.
[15] X. L. Meng and D. B. Rubin, "Maximum likelihood estimation via the ECM algorithm:a general framework," Biometrica, vol. 80, rr. 267-278, 1993.
[16] Ye. Bodyanskiy, "Computational intelligence techniques for data analysis," Lecture Notes in Informatics, Bonn: GI, pp. 15 – 36, 2005.
[17] Ye. Gorshkov, V. Kolodyaznhiy and Ye., Bodyanskiy, "New recursive learning algorithms for fuzzy Kohonen clustering network," 17th Int. Workshop on Nonlinear Dynamics of Electronic Systems, Rapperswil, Switzerland, pp. 58-61, 2009.
[18] L. Jain and C. Mumford, Computational Intelligence, Collaboration, Fuzzy and Emergence, Berlin: Springer, Vergal, 2009.
[19] S. Osowski, Sieci neuronowe do przetwarzania informacji, Warszawa: Oficijna Wydawnicza Politechniki Warszawskiej, 2006.
[20] A. B. Geva and I. Gath "Unsupervised optimal fuzzy clustering," Pattern Analysis and Machine Intelligence, vol. 2, n.7, pp. 773-787, 1989.
[21] T. Kohonen, Self-Organizing Maps. Berlin: Springer-Verlag, 1995.
[22] Ye. Bodyanskiy, A. Deineko, Y. Kutsenko and O. Zayika, "Data streams fast EM-fuzzy clustering based on Kohonen`s self-learning," 1th IEEE International Conference on Data Stream Mining & Processing (DSMP 2016), Lviv, Ukrane, pp. 309-313, 2016.
[23] A. B. Geva, "Clustering as a basis for evolving neuro-fuzzy modeling," Evolving Systems, pp. 59-71, 2010.
[24] UCI Repository of machine learning databases. CA: University of California, Department of Information and Computer Science. [Online]. Available: http://www.ics.uci.edu/~mlearn/MLRepository.html
Content type: Conference Abstract
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Deineko_A-Data_Stream_Online_Clustering_171-176.pdf357.52 kBAdobe PDFView/Open
2018_Deineko_A-Data_Stream_Online_Clustering_171-176__COVER.png525.93 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.