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Abstract—In the paper the online fuzzy clustering recurrent 
procedure has been introduced that allows the forming of 
hyperellipsoidal clusters with an arbitrary orientation of the 
axes is proposed. Such clustering system is the generalization 
of a number of known algorithms, it is intended to solve tasks 
within the general problems of Data Stream Mining (DSM) 
and Dynamic Data Mining (DDM), when information is 
sequentially fed to processing in online mode. 
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I. INTRODUCTION 

Clustering task is an integral part and an important 
direction in the global problem of Data Science and Data 
Mining [1, 2]. Many approaches and methods were 
proposed for solution of this problem [3-6]. They differ 
from each other in apriori assumptions, problem formulation 
and in used mathematical apparatus. Currently, the most 
intensively growing direction of Data Mining is DSM [7], in 
which data are fed to processing in the online mode, 
observation by observation. This direction is closely related 
with tasks of processing large amounts of data, so-called Big 
Data [8], when it is simply impossible to process increasing 
volume of data in the batch mode. 

Computational Intelligence (CI) can be successfully used 
for many tasks of DSM. And first of all the methods based 
on soft computing and neural networks among which the 
Fuzzy Clustering (FC) methods [4, 9, 10] are the most wide 
spread. At the same time, the overwhelming number of 
known methods are oriented to the batch mode processing. 
And known intelligent systems of sequential data processing 
and first of all Kohonen’s clustering neural networks, which 
also are known as Self-Organizing Maps [11], can solve 
crisp clustering tasks with the assumption of linearly 
separable classes. 

Capabilities of crisp clustering algorithms are restricted 
by the fact that real data usually form overlapping classes, 
thus each vector-observation could belong to several classes 
at once, with different probabilities (or belonging) levels. In 

this case soft calculations come to the fore. In the class of 
probabilistic methods most widely used is so-called 
Expectation-Maximization (EM) algorithm [10, 12-15]. And 
in the class of fuzzy methods the most popular is J.C. 
Bezdek’s Fuzzy C-means (FCM) algorithm [9, 10]. It can be 
noted that in [15] the hybrid clustering algorithm has been 
discussed. It unites both of these approaches. 

The mentioned clustering procedures which are based on 
soft computing are oriented to information processing only 
in batch mode. Naturally this fact makes usage of these 
methods in DSM possible. Note that in [16, 17] group of 
recursive FC algorithms were introduced. But clusters, what 
they are formed have a spherical shape. This fact limits their 
capabilities in situations where data form classes of an 
arbitrary form. 

In this connection, it seems appropriate to develop 
recurrent procedures for probabilistic and fuzzy 
clusterization, which allow to process data in online mode 
and to form clusters of the hyperellipsoidal form with the 
axes of arbitrary orientation in the features space. 

II. BATCH PROCEDURES FOR PROBABILISTIC AND FUZZY
CLUSTERING (FC) IN THE CASE OF HYPERELLIPSOIDAL 

CLASSES 
The batch clustering problem can be described in general 

case: it is assumed that the initial data array contains N 
multidimensional observations, which are described by 

vectors-features of order n ( )( 1 ,...,x k ( )i , ...,x k

( ))T n
nx k R∈ , 1, 2,3,...,k N=  (k – number of observation

in initial data array), which has to be partitioned for 
m(1<m<N) overlapping clusters. 

In a standard EM approach, it is also assumed that the 
density of the distribution of observations in each cluster is 
Gaussian:  
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where jc −  vector-centroid with order n of the j-th cluster,  

j − the correlation matrix of the j-th cluster of size ( )n n× :
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It is obvious that the joint density of the distribution of all 
data is described by the expression 
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where jp −  a priori probabilities-weights that satisfy the 
obvious condition 

1
1.

m

j
j

p
=

= (4) 

It can be noted that condition (4) completely coincides 
with the constraint on the levels of belonging of the k-th 
observation to the j-th cluster ( ) ,ju k  which is the basis of 
the fuzzy c-means method 

1
1.

m

j
j

u
=

= (5) 

In connection with that fact, FCM is sometimes called the 
method of fuzzy probabilistic clustering [10]. 

The main feature of the EM approach is that the exponent 
in (1), (3) contains the Mahalanobis distance between 
centroids jc  and observations ( )x k  

( )( ) ( )( ) ( )( )2 1,
T

m j j j jd x k c x k c x k c−= −  −
, 

(6) 

which allows, in contrast to FCM that restores spherical 
clusters to form classes in the form of hyperellipsoids with 
an arbitrary orientation of axes in the space of features. 

The solution of the clustering problem in the context of 
the EM approach is related to the maximization of the log 
likelihood function 

( )( ) ( )( )
1 1

, , , log
m m

j j j j j
k k

E x k c p p p x k
= =

 
 =  

 
 

, 
(7) 

that leads to estimates [12] 
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

 
(8)

A particular crisp version of the EM algorithm is the 
widely used k-means method coinciding with EM at 

1
jp m −=  and identity matrix .j  

K-means is based on minimizing the objective function

( )( ) ( ) ( )

( ) ( )( )

2
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2
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,

,
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where 

( ) ( )1, ,
0, .j

if x k j th cluster
u k

otherwise
 ∈ −= 


It should be noted that k-means is based on the Euclidean 
distance, although the method of Mahalanobis k-means is 
also known. It is based on the minimization of the goal 
function in the form 

( )( ) ( )( ) ( )

( ) ( )( )
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1 1
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1 1
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As a result of optimization (9), (11), it is not difficult to 
obtain estimates of the centroids coordinates in the form 

( ) ( ) ( )
( )

( )
1 1

1
j

N N

j j j
x k uk k j

c u k x k u k x k
N ∈= =

= =   (12) 

where jN −  the number of observations assigned to j-th 
cluster. 

A generalization of crisp objective functions (9), (11) in 
the case of overlapping classes is fuzzy objective functions 
[18] 

( )( ) ( ) ( )( )2

1 1
, , ,

N m

j j j j
k j

E x k c u u k d x k cβ

= =

= (13) 

where β −  a non-negative fuzzifier parameter. Such 
parameter determines the "bluring" of the boundaries 
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between classes (usually 2β = ), ( )( )2 , jd x k c  – estimate 
of Euclidean distance between ( )x k  and .jc

Minimization (13), taking into account the constraint (5), 
leads to the result [3]: 
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
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that for 2β =  FCM takes the form: 
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The first relation (14) can be easily transformed to the form 
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corresponding to the generalized Gaussian function [19], 
with 2β =  we get 
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corresponding to the Cauchy probabilities density function. 

Thus, it can be noted that if the EM approach is based on 
the Gaussian distribution, then for fuzzy procedures, the 
Cauchy distribution is implicit. Among the fuzzy clustering 
procedures based on the objective function (13), the closest 
to the EM approach is the algorithm introduced in [20]. It 
uses as an estimate of the distance expression 
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Minimization of the (18), taking into account (5) and 
(19), leads to the result 

( ) ( )( ) ( )( )

( ) ( ) ( )

( ) ( )( ) ( )( ) ( )

2 2
1 1

1

1 1

1 1

, , ,

,

.

m

j GG j j
l

N N

j j j
k k

N NT

j j j j j
k k

u k d x k c d x k c

c u k x k u k

u k x k c x k c u k

β β

β β

β β

− −

=

= =

= =


=


 =


 = − −




 

 

(20) 

for 2β =  (20) becomes 
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close to (15) and is a generalization of FCM for the case of 
hyperellipsoidal clusters. 

III. ADAPTIVE ONLINE PROCEDURES FOR PROBABILISTIC
AND FUZZY CLUSTERING IN THE CASE OF HYPERELLIPSOIDAL 

CLUSTERS 
Let's consider further a case when the data are fed to 

processing sequentially one after another in the form of a 
stream ( )1 ,x ( )2 ,x ( )..., ,x k ( )1 , ...,+x k where k has the 
sense of the current discrete time. It is clear that the fuzzy 
clustering procedures discussed above in this case are 
ineffective. It is known that the optimization problem 
solution of the objective function (9) corresponding to the k-
means method can be obtained with the help of the self-
learning WTA-rule of the clustering neural network of T. 
Kohonen [21] in the form 

( )
( ) ( ) ( ) ( )( )

( )
( )

1 1 ,

1 " ",
j j

j j

j

c k k x k c k

c k if c k winner

c k otherwise

 + + + −
+ = −
 −

η

(22)
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where ( )0 1 1kη< + < −  the learning rate parameter chosen 
in the accordance with the stochastic approximation 

conditions. 

Here it should be noted that it is possible to draw a clear 
analogy between self-learning according to T. Kohonen and 
the EM algorithm: the step of competition corresponds to the 
E-step (expectation), and the step of synaptic adaptation is
the M-step (maximization). At the step of synaptic
adaptation, a step of gradient minimization of the distance

( ) ( )( ) ( ) ( ) 22 1 , 1E j jd x k c k x k c k+ = + − (23) 

is realized, i.e., procedure (22) can be represented in the form 
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Similarly, the Mahalanobis metric (6), used in the EM 
algorithm, can be minimized [22]: 
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where the index jk  shows how many times the j-th neuron 
of Kohonen’s SOM was the winner in the process of self-
learning. 

In the case of overlapping classes, procedure (26) can be 
supplemented by an estimate of the membership level of the 
first relation type (15): 
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The task of fuzzy objective function recurrent 
minimization of type (13) with constraint (5) reduces to the 
solution of the non-linear programming problem by the 
Arrow-Hurwitz-Uzawa procedure by optimizing the 
Lagrange function. In this case [16]: 
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and for 2β =  FCM: 
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where the factors ( )1ju kβ +  and ( )2 1ju k +  play the role of 
the neighborhood function in the WTM-rule of self-learning, 
instead of the traditionally used Gaussians, generalized 
Gaussian is used in (28), and in (29) - Cauchian, while the 
width parameter of these functions is given automatically. 

As for the Gath-Geva algorithm [20], described by the 
expression (18-21), recurrent modifications were introduced 
in [23]. However, they are not related to optimization 
procedures. Thus, in [23] a simplified procedure of the form 
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that is essentially a WTA-rule of self-learning, supplemented 
with the procedure for the correlation matrix correcting. In 
this case, this matrix does not influence the centroids 
correction process. 

More flexible is the algorithm proposed in [23], where an 
additional variable of accumulated memberships were 
introduced into consideration: 
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In this case, the FC procedure becomes the form 
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The algorithm (32) coincides with (28) for 
( ) ( )11 1jk U kη −+ = +  and differs only in the used distance

estimate ( ) ( )( )2 1 ,GG jd x k c k+  instead of 

( ) ( )( )2 1 ,E jd x k c k+ . The correlation matrix ( )j k  does
not affect the process of centroids correction. 

Returning to the algorithm (25) based on the gradient of 
the Mahalanobis distance, it is easy to introduce a recurrent 
version of the Gath-Geva algorithm, which is a 
generalization of the procedures (25-26, 28): 
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For 2β =  we obtain 
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IV. RESULTS OF EXPERIMENTS

Tree data set from UCI Machine Learning Repository 
[24] are used in the experimental analysis. The information
about used data sets is shown in Table I.

TABLE I. THE DESCRIPTION OF THE DATA SETS 

Data sets 
Properties  

Attributes Classes Number of samples 

Iris 4 3 150
WDBC 30 2 569 

The performance of described in these paper systems 
were compared in series of experiments. For comparison of 
proposed soft clustering system, the standard FCM algorithm 
and standard EM algorithm were taken. The clustering 
accuracy of proposed soft clustering system was measured 
and compered with FCM аnd EM algorithms. The 
clusterization results were shown in Table II. These 
clustering results of the proposed soft clustering system, 
FCM algorithm and standard EM algorithm were estimated 
using the well-known Xie-Benie criterion for fuzzy 
clustering. From Table II easy to see that proposed soft 
clustering system demonstrated a better performance of 
clustering quality. The changes centroids coordinates from 
initial initialization to the final iteration are shown at the 
Fig. 1. 

TABLE II. THE MEAN CLUSTERING ACCURACIES OF THE COMPARED 
ALGORITHMS  

Algorithms for 
comparison 

Clustering accuracies  

Iris WDBC

FCM 0,82 0,86
EM 0,84 0,85

Soft clustering system 0,89 0,90 

V. CONCLUSION 

The online fuzzy clustering problem was considered. The 
recurrent procedure has been introduced that allows the 
forming of hyperellipsoidal clusters with an arbitrary 
orientation of the axes. The proposed procedure is the 
generalization of a number of known algorithms, it is quite 
simple in computational implementation and is intended to 
solve tasks within the general problem of Data Stream 
Mining, when information is sequentially fed to processing. 

a) Initial centroids coordinates “Iris” c) Final centroids coordinates “Iris d) Initial centroids coordinates “WDBC” 
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b) Middle iteration “Iris” e) Middle iteration “WDBC” f) Final centroids coordinates “WDBC” 
Fig. 1. The changes centroids coordinates 
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