Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52474
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKravets, Petro
dc.coverage.temporal21-25 August 2018, Lviv
dc.date.accessioned2020-06-19T12:04:56Z-
dc.date.available2020-06-19T12:04:56Z-
dc.date.created2018-02-28
dc.date.issued2018-02-28
dc.identifier.citationKravets P. Game Model for Data Stream Clustering / Petro Kravets // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 123–127. — (Dynamic Data Mining & Data Stream Mining).
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52474-
dc.description.abstractIn this article, the stochastic game model for data stream clustering is offered. Players represent numerical values of the clustering data. The essence of the game is that players perform a self-learning random move from one cluster to another in order to minimize the differences between the data of the same cluster. To solve the game, an adaptive recursive method has been developed. Computer modeling confirms the convergence of the game method with certain limitations of its parameters.
dc.format.extent123-127
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofData stream mining and processing : proceedings of the IEEE second international conference, 2018
dc.subjectdata stream clustering
dc.subjectstochastic game model
dc.subjectadaptive game method
dc.titleGame Model for Data Stream Clustering
dc.typeConference Abstract
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages5
dc.identifier.citationenKravets P. Game Model for Data Stream Clustering / Petro Kravets // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 123–127. — (Dynamic Data Mining & Data Stream Mining).
dc.relation.references[1] A. Jain, M. Murty, and P. Flynn, “Data Clustering: A Review”, ACM Computing Surveys, vol 31, no. 3, pp. 264-323, September 1999.
dc.relation.references[2] D. Barbara, “Requirements for clustering data streams”, ACM SIGKDD Explorations Newsletter, vol. 3, №. 2, pp. 23-27, 2003.
dc.relation.references[3] J. Chandrika, and K.R. Ananda Kumar, “Dynamic Clustering Of High-Speed Data Streams”, International Journal of Computer Science Issues, vol. 9, iss. 2, №. 1, pp. 224-228, 2012.
dc.relation.references[4] T. Roughgarden, E. Tardos and V. V. Vazirani. Algorithmic Game Theory, edited by Noam Nisan, Cambridge University Press, 2007.
dc.relation.references[5] A. Nazin, and A. Poznyak, Adaptive Choice of Variants, Moscow, Nauka, 1986 (in Russian).
dc.relation.references[6] H. J. Kushner, G. George Yin, Stochastic Approximation and Recursive Algorithms and Applications. New York: Springer Verlag, 2003.
dc.relation.referencesen[1] A. Jain, M. Murty, and P. Flynn, "Data Clustering: A Review", ACM Computing Surveys, vol 31, no. 3, pp. 264-323, September 1999.
dc.relation.referencesen[2] D. Barbara, "Requirements for clustering data streams", ACM SIGKDD Explorations Newsletter, vol. 3, №. 2, pp. 23-27, 2003.
dc.relation.referencesen[3] J. Chandrika, and K.R. Ananda Kumar, "Dynamic Clustering Of High-Speed Data Streams", International Journal of Computer Science Issues, vol. 9, iss. 2, №. 1, pp. 224-228, 2012.
dc.relation.referencesen[4] T. Roughgarden, E. Tardos and V. V. Vazirani. Algorithmic Game Theory, edited by Noam Nisan, Cambridge University Press, 2007.
dc.relation.referencesen[5] A. Nazin, and A. Poznyak, Adaptive Choice of Variants, Moscow, Nauka, 1986 (in Russian).
dc.relation.referencesen[6] H. J. Kushner, G. George Yin, Stochastic Approximation and Recursive Algorithms and Applications. New York: Springer Verlag, 2003.
dc.citation.conferenceIEEE second international conference "Data stream mining and processing"
dc.citation.spage123
dc.citation.epage127
dc.coverage.placenameЛьвів
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Kravets_P-Game_Model_for_Data_Stream_123-127.pdf235.19 kBAdobe PDFView/Open
2018_Kravets_P-Game_Model_for_Data_Stream_123-127__COVER.png506.75 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.