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Abstract—In this article, the stochastic game model for data 
stream clustering is offered. Players represent numerical 
values of the clustering data. The essence of the game is that 
players perform a self-learning random move from one cluster 
to another in order to minimize the differences between the 
data of the same cluster. To solve the game, an adaptive 
recursive method has been developed. Computer modeling 
confirms the convergence of the game method with certain 
limitations of its parameters.  
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I. INTRODUCTION

The clustering is a partition of the set of objects into 
subsets depending on their similarity. The separated subsets 
are called as clusters. Elements of one cluster have the 
general properties. Elements of different clusters 
considerably differ among themselves.  

The clustering is used for problem-solving of the 
intellectual analysis and visualization of the data, grouping, 
and recognition of images, extraction of new knowledge and 
for information search. The clustering purpose consists in the 
finding of groups of similar objects in the set [1]. 

The clustering of objects also is used in chemistry, 
biology, medicine, sociology, pedagogics, psychology, 
philology, marketing, signal processing, pattern recognition, 
scientific discipline of documentation, computer science, 
scientific work and other areas of human activity for data 
structure in a cluster form for the purpose of their ordering 
and the group analysis. 

The general clustering scheme is such: extraction of 
characteristics of objects; definition of the metric affinity of 
objects; partition of a set of objects on clusters; interpretation 
of clustering results. 

Let each object x X∈  from a set of objects 
1 2( , ,..., )LX x x x=  is described by a vector of properties 

( [1], [2],..., [ ])x x x x k= , which can be quantitative or 
qualitative characteristics of the object.  

In problems of data stream clustering vectors of 
properties change in time: ( | 1,2,...)tx x t= =  [2, 3]. As a 
rule, the law of change of object properties is unknown a 
priori. 

The similarity of two objects ix  also jx  is defined by the 
metrics of their affinity ( , )i jx xδ  in space of characteristics.
As the metrics, the Euclidean distance, the Tchebyshev 
distance, the Manhatten distance, the percentage of 

inconsistency, the Pierce correlation factor and others are 
used.  

Generally, the clustering of objects it is possible to 
consider as a problem of optimum distribution of objects on 
groups. The minimization of a root-mean-square error of 
clusters setting can be the criterion of optimization: 

2( )

1 1

min
jCN

j
i j

j i
x xδ

= =

= − → ,

where ( )j
ix  is the point belonging to j -th cluster; jx  is the 

center of the j -th cluster; jC  is a number of elements of the 
j -th cluster. 

Substantial interpretation of the generated clusters for a 
finding of factors or the reasons of a grouping of objects in 
clusters is the final stage of clustering. For estimation of the 
quality of clustering, involve experts from corresponding 
subject domains. 

The data intended for clustering, as a rule, contains 
uncertainty elements in practical applications. It can be 
indistinctly specified characteristics of the objects,  missed 
attributes of objects in databases, noisy signals etc. In the 
uncertainty conditions apply fuzzy clustering, adaptive 
clustering, genetic algorithms, neural networks without the 
teacher learning.  

The data clustering is formulated as a competitive or 
cooperative problem of assigning an object to one or another 
cluster. Problems of a competition and cooperation of objects 
are studied by the theory of games [4], and in uncertainty 
conditions, they are studied by the theory of stochastic games 
[5]. Therefore actual from the scientific, informative and 
practical points of view there are applications of methods of 
stochastic games for the data clustering in the conditions of 
uncertainty.  

Construction of a game model of the data clustering with 
uncertainty elements is the goal of this paper. For purpose 
achievement it is necessary to solve such problems: to carry 
out a formulation of a problem game of the data clustering, to 
develop an adaptive game method and algorithm for solving 
the problem, to develop computer program model, to analyze 
and interpretation of the received results.  

II. GAME PROBLEM STATEMENT

Let 1 2{ , ,..., }LX x x x=  is the set by coordinates of points 
kx R∈  in k  -dimensional parametrical space. Coordinates 

of points define the normalized characteristic vector intended 
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for objects clustering. In this set, it is necessary to separate 
N  clusters 
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by criteria 

1 min
n

i j
x Yn

x x
C ∈

− → ,  1..n N= (1)

where | |n nC Y=  is a quantity of elements which enter into a 
cluster nY ; 1R∗ ∈  is the Euclidean distance of a vector. 

Let parameters of objects are vector random variables 
with stationary normal distribution:  

~ ( , ) k
x xx Normal m d R∈ , 

where xm  is an expectation value; xd  is a dispersion. 

The separation of clusters nY  ( 1..n N= ) in the set X
will be done using the stochastic game method described by 
the tuple ( , , | )i iI A i IΞ ∈ , where I  is a set of players; 

| |L I=  is a quantity of players; { [1],..., [ ]}i i iA a a N=  is a 
set of pure strategies of the i -th player which define a choice 
of one of clusters; N  is a quantity of strategies of the i -th 
player ( N L< ); 1:i A RΞ →  is a lose function of the i  -th 
player; i

i I
A A

∈
= ×  is a set of the combined strategies.  

The game essence consists in the random moving of 
players from one cluster to another. For this purpose during 
time moments 1,2,...t = , each player on the basis of the 
generator of random events independently of others chooses 
a pure strategy i ia A∈  which defines its accessory to the 
corresponding cluster. According to (1), after the realization 
of the combined variant a A∈ , players receive random losses 

( )i aξ  with a priori unknown stochastic characteristics: 

( )1i i j
t t t i ji

j It

a a x x i I
C

ξ χ
∈

= = − ∀ ∈ , (2)

where ( )i i j
t t t

j I
C a aχ

∈

= =  is a current quantity of

elements of a cluster which contains the i -th player; 
( ) {0,1}χ ∗ ∈  is an indicator of the event.  

The efficiency of a game course is defined by functions 
of average losses:  

1

1 t
i i
t t τ

τ
ξ

=

Ξ =  i I∀ ∈ . (3)

The game purpose consists in minimization of the system 
of functions of average losses (3) in time: 

lim mini
tt→∞

Ξ → i I∀ ∈ . (4)

So, on the basis of a supervision of current losses { }i
nξ  

each player i I∈  should learn to choose pure strategy { }i
ta  

so that with time course 1,2,...t =  to provide the 
performance of criteria system (4).  

The game problem solutions will satisfy one of the 
conditions of collective balance, for example, on Nash or 
Pareto, depending on a method of formation of a sequence of 
strategies { }i

ta i I∀ ∈ . 

III. METHOD OF PROBLEM SOLVING

Stochastic game solving we will execute by means of 
adaptive recurrent transformation of vectors i

tp i I∀ ∈  of the 
mixed strategies. 

Construction of a method of stochastic game solving we 
will carry out on the basis of stochastic approximation of a 
complementary slackness condition of a determined game, 
correct for the mixed strategies in a balance point on Nash 
[5].  

For this purpose, we will define a polylinear function of 
average losses for the determined game: 

;

( ) ( ) ( )
j

i i j j

a A j I a a

V p v a p a
∈ ∈ ∈

= ∏ ,

where  ( ) { ( )}i
tv a M aξ= . 

Then the vector of a complementary slackness condition 
(CS) will be of the form: 

CS = ( ) ( ) 0i
i i N i

p
V p e V p

→

∇ − =   i I∀ ∈ ,

where ( )i
i

p
V p∇  is a gradient of the polylinear function of

average losses; (1 | 1.. )N
je j N= =  is a vector whose all 

components are equal to 1; Mp S∈  is the combined mixed 
strategy of players set on a convex unit simplex MS  
( LM N= ). 

To take account of the solutions in vertices of the unit 
simplex we will execute weighing of a iCS -vector by 
elements of a vector ip  of the mixed strategies: 

( )( ) 0i idiag p CS
→

= i I∀ ∈ , (5)

where ( )idiag p  it is the square diagonal matrix of an order 
N  constructed of elements of a vector ip .  

Considering that 
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( )[ ]

{ [ ( ) ] | }

i
i i N i

p

i i i i i
t t t t

diag p V e V

E e a p p pξ

∇ − =

= − =
, 

on the basis of a method of stochastic approximation [6] we 
will receive recurrent expression: 

{ }
11 ( ( ) )

t

i N i i i i
t t t t t tp p e a pεπ γ ξ

++ = − − i I∀ ∈ , (6)

where E  is an expectation symbol; 
1t

N
επ

+
 is a projector on 

N -dimensional tε -simplex 
1t

NSε +
 [5]; 0tγ > , and 0tε >  are 

monotonously descending sequences of positive values; 
( )i

te a  is the unit vector specifying in a choice of pure 
strategy i i i

ta a A= ∈ . 

Parameters tγ  and tε  can be calculated as follows: 

t t αγ γ −= , t t βε ε −= ,  (7)

where 0γ > ; 0α > ; 0ε > ; 0β > .  

Convergence of strategies (6) to optimum values with 
probability 1 and in the root-mean-square is defined by the 
ratio of parameters tγ  and tε  which should satisfy 
fundamental conditions of stochastic approximation [6]. 

Projection on expanded an tε -simplex 
1t

NSε +
 provides the 

performance of the condition [ ] , 1..i
t tp j j Nε≥ =  necessary 

for completeness of the statistical information on chosen pure 
strategies, and the parameter 0tε →  is used as an additional 
element for controlling the convergence of the recurrent 
method. 

The choice of pure strategy [ ]i
ta k  i I∀ ∈  is carried out 

by players on the basis of dynamic random distributions (6): 

1.. 1

arg min ( ( )) {1.. },
k

i i
t tk N j

k p a j Nω
= =

 
= > ∈ 

 
   (8) 

where [0, 1]ω ∈  it is the real random number with the 
uniform distribution law. 

The stochastic game begins from not learned vectors of 
the mixed strategies with a value of elements 0 ( ) 1/ip j N= , 
where 1..j N= . During following moments of time the 
dynamics of vectors of the mixed strategies are defined by a 
Markovian recurrent method (6) – (8).  

So, at the moment of time t  each player on the basis of 
the mixed strategy i

tp  chooses a pure strategy i
na  and until 

the moment of time 1t +  receives current loss i
tξ  then 

calculates the mixed strategy 1
i
tp +  according to (6). 

Thanks to the dynamic reorganization of the mixed 
strategies based on the processing of current losses, the 
method (6) – (8) provide an adaptive choice of pure 
strategies in time. 

Quality of game of the data clustering is estimated by: 

1) the average loss function:

1

1 L
i

t t
iL =

Ξ = Ξ , (9)

where | |L I=  is a cardinality of a set of players; 

2) the function of the average norm of mixed player
strategies: 

1 1

1 t L
i

t
i

p
tL τ

τ = =

Δ =  .        (10) 

The algorithm of Stochastic Game Solving 

1. To set initial values of parameters: 0t =  is an initial
moment of time; N  is a quantity of pure strategies of players 
(otherwise it is a number of clusters nY , 1..n N= ); | |L I=  
is a quantity of players; 1 2{ , ,..., }LX x x x=  is a set of objects 
intended for clustering; k  is a quantity of characteristic 
factors of objects kx R∈ ; ( [1], [2],..., [ ])x x x xm m m m k=  is an 
expectation value of parameters of object  x X∈ ; 

( [1], [2],..., [ ])x x x xd d d d k=  is a dispersion of parameters of 
object x X∈ ; { [1], [2],i i iA a a=  ..., [ ]}ia N , ( )ia j j= , 

1..i L= , 1..j N=  is a vectors of pure strategies of players; 

0 (1/ ,...,1 / )ip N N= , 1..i L=  is an initial mixed strategies of 
players; 0γ >  is a parameter of a step of learning; (0,1]α ∈  
is an order of a step of learning; ε  is an ε -simplex 
parameter; 0β >  is an order of an ε -simplex expansion 
rate; maxt  is a maximum quantity of steps of a method. 

2. To choice variants of actions i i
ta A∈  of players 

1..i L=  according to (8). 

3. Get current property values of objects as random
variables with the normal distribution law: 

12

,
1

6t x x j t
j

x m d ω
=

 
= + − 

 
 ,

where , [0, 1]j tω ∈  it is the real random number with the 
uniform distribution law. 

4. To calculate the value of current losses i
tξ , 1..i L=

according to (2).  

5. To calculate the value of parameters tγ  and tε , 
according to (7). 

6. To calculate elements of vectors of the mixed
strategies i

tp , 1..i L=  according to (6). 

7. To calculate quality characteristics tΞ (9) and tΔ (10)
of the data clustering. 

8. To set the following moment of time : 1t t= + .
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9. If maxt t<  then go to a step 2, else to stop.

IV. RESULTS OF COMPUTER MODELLING

We will solve a stochastic game by means of a recurrent 
method (6) – (8) for test parameters: 2k = , 2N = , 

{1,2}iA = , 1γ = , 0.999 / Nε = , 0.3α = , 2β = , 
5

max 10t = , 0.01d = .  

Let in the base set 1 2{ , }X Y Y=  two non-empty subsets 

1 2Y Y∩ = ∅  are visualized such that intracluster distances are 
less than intercluster distances. Elements of these subsets are 
received as the random points generated on a plane on the 
normal distribution law for different mathematical 
expectations. 

On Fig. 1 graphs of functions tΞ of average losses of
players and average norm tΔ of the mixed strategies  which
characterize the convergence of stochastic game of data 
clustering are represented in logarithmic scale.  

Fig. 1.  Characteristics of solving the stochastic game in pure strategies 

The game method (6) – (8) provides minimization of the 
function tΔ  of average losses in time. The function of the 
average norm of mixed strategies reaches the logarithmic 
zero, which illustrates the obtaining of the game’s solving in 
pure strategies.  

Dependence of average quantity of game learning steps 
t  on the parameter α  is shown on Fig. 2. Value t  is 
averaged on realizations of random processes.  

The moment of a game stop is defined by a condition of 
the approach of the average norm of mixed strategies to 1 
( 0.99tΔ ≥ ) and correct assignment of elements of the set X
to one of the clusters 1Y  or 2Y  (how these clusters are 
visualized in the set X ).  

Fig. 2.  Influence of the parameter α  on the game convergence 

For a solved problem, the growth of parameter α  from 0 
to 0.7  does not lead to considerable deterioration of 

stochastic game convergence. Considerable growth of the 
average quantity of game steps occurs at 0.7α > .  

The order of convergence rate of a game method is 
defined by a parity of parameters α  and β . For the 
convergence of the offered method, it is necessary that these 
parameters satisfy the conditions of stochastic approximation 
[6]. Dependence of average quantity of steps t  of clustering 
game from a dispersion xd  of parameters of objects x X∈  it 
is representing by the diagram on Fig. 3. 

Value of a dispersion [0;50]xd ∈  does not a material 
effect on the quantity of the steps necessary for the data 
clustering by means of a game method (6) – (8). For values 

50xd >  of a dispersion, considerable growth of the average 
quantity of game steps necessary for correct adding of 
elements of the set X  to one of the clusters 1Y  or 2Y  at the 
level 0.99tΔ ≥  of game learning is observed. 

Fig. 3.  Influence of the dispersion on the game convergence 

The boundary elements of the subsets can be assigned to 
both cluster 1Y  and cluster 2Y , that is, clusters can intersect. 

Let in the general set X  there are the points y Y∈
placed on equally spaced from subsets 1Y Y−  and, 2Y Y−
that is, 1 2| ( , ) ( , ) |s y Y Y s y Y Y ε− − − < , where 

( , ) min
z Z

s y Z y z
∈

= − . Then the method (6) – (8) provides

solving the game in mixed strategies as shown on Fig. 4. 

Fig. 4.  Characteristics of solving the stochastic game in mixed strategies 

On Fig. 4 it is visible that the function tΔ of the average
norm does not reach the logarithmic zero indicating that the 
game is solved in mixed strategies.  

The growth of cardinality of a set X  and corresponding 
growth of the number of players leads to a reduction of 
convergence rate of the stochastic game, which appears in 
the growth of the quantity of the steps necessary for the data 
clustering.  
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On Fig. 5 the graph of the dependence of average 
quantity of steps of stochastic game learning on the number 
of clustering objects is represented. The data intended for 
clustering is received randomly by means of the normal 
distribution law of coordinates of points on a plane. It is 
generated two concentrations of points with parameters of 
the normal distribution. The moment t  of the game 
termination is defined by a condition 0.99tΔ ≥ . The 
obtained results are averaged on exp 100k =  experiments. 

By results of experiments, it is visible that with an 
increase in the quantity of clustering objects the quantity of 
the steps necessary for stochastic game learning increases. 

Fig. 5.  Dependence of the average quantity of game steps on the number 
of clustering points  

Achievement of the characteristics of the stochastic game 
convergence, which is acceptable in practice, is determined 
by fine-tuning of the parameters of the game method within 
the framework of the basic relations given by the theory of 
stochastic approximation. 

V. CONCLUSIONS

In this paper, the new game model for data stream 
clustering is proposed. An adaptive recursive method was 

constructed to solve the game. Random moving of points on 
a plane simulates data streams. 

Convergence of a game method depends on the 
dimension of the stochastic game, the intensity of the noise 
and the parity of parameters of the game method.  

The efficiency of the game of data clustering decreases at 
an increase of the number of players and noise intensity. 

Simulation veracity proves repeatability of values of 
average characteristics of the stochastic game obtained for 
various realizations of random variables. 

The offered game method of the data clustering belongs 
to a class of methods, which are based on the processing of 
reactions of the environment. This method has a relatively 
small (power-law) order of convergence rate due to the a 
priori uncertainty of the system. 

This limitation can be overcome by the high performance 
of modern computer and possibility a game problem 
parallelization.  
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