Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52444
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMashtalir, Sergii
dc.contributor.authorMikhnova, Olena
dc.contributor.authorStolbovyi, Mykhailo
dc.coverage.temporal21-25 August 2018, Lviv
dc.date.accessioned2020-06-19T12:04:35Z-
dc.date.available2020-06-19T12:04:35Z-
dc.date.created2018-02-28
dc.date.issued2018-02-28
dc.identifier.citationMashtalir S. Sequence Matching for Content-Based Video Retrieval / Sergii Mashtalir, Olena Mikhnova, Mykhailo Stolbovyi // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 549–553. — (Machine Vision and Pattern Recognition).
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52444-
dc.description.abstractIn this paper the authors propose a novel technique for comparing video frame sequence presented in an arbitrary metric space. By reviewing existing best practices in spatio-temporal video segmentation and frame matching, the authors suggest mathematical grounding for efficient video content analysis. Variants of relationships are observed between the frame sequences under comparison (perfect match, inclusion, equality of cardinality of sets). Examples of application as well as estimation metrics are also provided.
dc.format.extent549-553
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofData stream mining and processing : proceedings of the IEEE second international conference, 2018
dc.relation.urihttps://www.igi-global.com/article/keyframe-extraction-from-video/115840
dc.subjectVideo Content Matching
dc.subjectSpatio-Temporal Segmentation
dc.subjectSet Theory
dc.subjectMetric Space
dc.titleSequence Matching for Content-Based Video Retrieval
dc.typeConference Abstract
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.contributor.affiliationKharkiv National University of Radio Electronics
dc.contributor.affiliationKharkiv Petro Vasylenko National Technical University of Agriculture
dc.format.pages5
dc.identifier.citationenMashtalir S. Sequence Matching for Content-Based Video Retrieval / Sergii Mashtalir, Olena Mikhnova, Mykhailo Stolbovyi // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 549–553. — (Machine Vision and Pattern Recognition).
dc.relation.references[1] D. Schonfeld, et. al., Video search and mining. Studies in Computational Intelligence. Springer, Berlin, 2010.
dc.relation.references[2] R. Szeliski, Computer vision. Algorithms and applications. Springer, London, 2011.
dc.relation.references[3] L. Chen, and F. W. M. Stentiford “Video sequence matching based on temporal ordinal measurement,” Pattern Recognition Letters., vol. 29, pp. 1824-1831, 2008.
dc.relation.references[4] S. Mashtalir, and O. Mikhnova, “Key frame extraction from video: framework and advances,” J. Computer Vision and Image Processing. vol. 4(2), pp. 67-78, 2014. (https://www.igi-global.com/article/keyframe-extraction-from-video/115840)
dc.relation.references[5] H. Lu, and Y.-P. Tan, “An effective post-refinement method for shot boundary detection,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 15(11), pp. 1407–1421, November, 2005.
dc.relation.references[6] W. Heng, and K. Ngan, “Shot boundary refinement for long transition in digital video sequence”, IEEE Transactions on Multimedia, vol. 4(4), pp. 434-445, December, 2002.
dc.relation.references[7] A. F. Smeaton, P. Over, and A. R. Doherty, “Video shot boundary detection: Seven years of TRECVid activity,” J. Computer Vision and Image Understanding. vol. 114(4), pp. 411-418, 2010.
dc.relation.references[8] Zhang Y.-J. (ed.), Advances in image and video segmentation. Hershey- London-Melbourne-Singapore: IRM Press, 2006.
dc.relation.references[9] S. Porter, M. Mirmehdi, and B. Thomas, “Temporal video segmentation and classification of edit effects”, Image and Vision Computing., vol. 21, pp. 1097-1106, December 2003.
dc.relation.references[10] S. Piramanayagam, E. Saber, N. D. Cahill, and D. Messinger, “Shot boundary detection and label propagation for spatio-temporal video segmentation” Proc. SPIE 9405, Image Processing: Machine Vision Applications VIII, 94050D 7 p., February 2015.
dc.relation.references[11] S. Thakare, “Intelligent processing and analysis of image for shot boundary detection,” International Journal of Emerging Technology and Advanced Engineering., vol. 2, no. 2, pp. 208-212, Mar.-Apr. 2012.
dc.relation.references[12] R. Vázquez-Martín, and A. Bandera, “Spatio-temporal feature-based keyframe detection from video shots using spectral clustering,” Pattern Recognition Letters, vol. 34, no. 7, pp. 770-779, 2013.
dc.relation.references[13] G. I. Rathod, and D.A. Nikam, “An algorithm for shot boundary detection and key frame extraction using histogram difference,” Int. J. Emerging Technology and Advanced Engineering, vol. 3(8), pp. 155-163, August, 2013.
dc.relation.references[14] J. Nesvadba, F. Ernst, J. Perhavc, J. Benois-Pineau, and L. Primaux, “Comparison of shot boundary detectors”, Int. Conf. on Multimedia and Expo, IEEE Press, Amsterdam, pp. 6-8, 2005.
dc.relation.references[15] H. Jiang, G. Zhang, H. Wang and H. Bao, “Spatio-temporal video segmentation of static scenes and its applications” IEEE Transactions on Multimedia., vol. 17, no. 1, pp. 3-15, January, 2015.
dc.relation.references[16] Y. Bodyanskiy, D. Kinoshenko, S. Mashtalir, and O. Mikhnova, “Online video segmentation using methods of fault detection in multidimensional time sequences”, Int. J. of Electronic Commerce Studies, vol. 3(1), pp. 1-20, 2012.
dc.relation.references[17] O. Mikhnova, and N. Vlasenko, “Key frame partition matching for video summarization,” Int. J. of Information Models and Analyses, vol. 2(2), pp. 145-152, 2013.
dc.relation.references[18] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to Information Retrieval. Cambridge University Press, Cambridge, 2008.
dc.relation.references[19] S. V. Mashtalir, and O. D. Mikhnova, “Stabilization of key frame descriptions with higher order Voronoi diagram”, J. Bionics of intelligence. vol. 1, pp. 68-72, 2013.
dc.relation.referencesen[1] D. Schonfeld, et. al., Video search and mining. Studies in Computational Intelligence. Springer, Berlin, 2010.
dc.relation.referencesen[2] R. Szeliski, Computer vision. Algorithms and applications. Springer, London, 2011.
dc.relation.referencesen[3] L. Chen, and F. W. M. Stentiford "Video sequence matching based on temporal ordinal measurement," Pattern Recognition Letters., vol. 29, pp. 1824-1831, 2008.
dc.relation.referencesen[4] S. Mashtalir, and O. Mikhnova, "Key frame extraction from video: framework and advances," J. Computer Vision and Image Processing. vol. 4(2), pp. 67-78, 2014. (https://www.igi-global.com/article/keyframe-extraction-from-video/115840)
dc.relation.referencesen[5] H. Lu, and Y.-P. Tan, "An effective post-refinement method for shot boundary detection," IEEE Transactions on Circuits and Systems for Video Technology, vol. 15(11), pp. 1407–1421, November, 2005.
dc.relation.referencesen[6] W. Heng, and K. Ngan, "Shot boundary refinement for long transition in digital video sequence", IEEE Transactions on Multimedia, vol. 4(4), pp. 434-445, December, 2002.
dc.relation.referencesen[7] A. F. Smeaton, P. Over, and A. R. Doherty, "Video shot boundary detection: Seven years of TRECVid activity," J. Computer Vision and Image Understanding. vol. 114(4), pp. 411-418, 2010.
dc.relation.referencesen[8] Zhang Y.-J. (ed.), Advances in image and video segmentation. Hershey- London-Melbourne-Singapore: IRM Press, 2006.
dc.relation.referencesen[9] S. Porter, M. Mirmehdi, and B. Thomas, "Temporal video segmentation and classification of edit effects", Image and Vision Computing., vol. 21, pp. 1097-1106, December 2003.
dc.relation.referencesen[10] S. Piramanayagam, E. Saber, N. D. Cahill, and D. Messinger, "Shot boundary detection and label propagation for spatio-temporal video segmentation" Proc. SPIE 9405, Image Processing: Machine Vision Applications VIII, 94050D 7 p., February 2015.
dc.relation.referencesen[11] S. Thakare, "Intelligent processing and analysis of image for shot boundary detection," International Journal of Emerging Technology and Advanced Engineering., vol. 2, no. 2, pp. 208-212, Mar.-Apr. 2012.
dc.relation.referencesen[12] R. Vázquez-Martín, and A. Bandera, "Spatio-temporal feature-based keyframe detection from video shots using spectral clustering," Pattern Recognition Letters, vol. 34, no. 7, pp. 770-779, 2013.
dc.relation.referencesen[13] G. I. Rathod, and D.A. Nikam, "An algorithm for shot boundary detection and key frame extraction using histogram difference," Int. J. Emerging Technology and Advanced Engineering, vol. 3(8), pp. 155-163, August, 2013.
dc.relation.referencesen[14] J. Nesvadba, F. Ernst, J. Perhavc, J. Benois-Pineau, and L. Primaux, "Comparison of shot boundary detectors", Int. Conf. on Multimedia and Expo, IEEE Press, Amsterdam, pp. 6-8, 2005.
dc.relation.referencesen[15] H. Jiang, G. Zhang, H. Wang and H. Bao, "Spatio-temporal video segmentation of static scenes and its applications" IEEE Transactions on Multimedia., vol. 17, no. 1, pp. 3-15, January, 2015.
dc.relation.referencesen[16] Y. Bodyanskiy, D. Kinoshenko, S. Mashtalir, and O. Mikhnova, "Online video segmentation using methods of fault detection in multidimensional time sequences", Int. J. of Electronic Commerce Studies, vol. 3(1), pp. 1-20, 2012.
dc.relation.referencesen[17] O. Mikhnova, and N. Vlasenko, "Key frame partition matching for video summarization," Int. J. of Information Models and Analyses, vol. 2(2), pp. 145-152, 2013.
dc.relation.referencesen[18] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to Information Retrieval. Cambridge University Press, Cambridge, 2008.
dc.relation.referencesen[19] S. V. Mashtalir, and O. D. Mikhnova, "Stabilization of key frame descriptions with higher order Voronoi diagram", J. Bionics of intelligence. vol. 1, pp. 68-72, 2013.
dc.citation.conferenceIEEE second international conference "Data stream mining and processing"
dc.citation.spage549
dc.citation.epage553
dc.coverage.placenameЛьвів
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Mashtalir_S-Sequence_Matching_for_549-553.pdf295.16 kBAdobe PDFView/Open
2018_Mashtalir_S-Sequence_Matching_for_549-553__COVER.png1.55 MBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.