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Abstract— In this paper the authors propose a novel 
technique for comparing video frame sequence presented in an 
arbitrary metric space. By reviewing existing best practices in 
spatio-temporal video segmentation and frame matching, the 
authors suggest mathematical grounding for efficient video 
content analysis. Variants of relationships are observed 
between the frame sequences under comparison (perfect 
match, inclusion, equality of cardinality of sets). Examples of 
application as well as estimation metrics are also provided. 
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I. INTRODUCTION 

Great diversity of artificial intelligence problems 
emerged during the last two decades. Researchers around the 
globe are trying to streamline people’s activities by 
introducing contemporary methods and techniques that aid 
machines in decreasing human mental workload. Multimedia 
processing is among leading areas of research and 
development in numerous companies. Motorola Multimedia 
Research Lab, IBM Research, FX Palo Alto Laboratory, 
Google, just to name a few. 

In this paper we consider frame sequence matching 
which may turn out quite complicated for a machine because 
of blends and dissolves that make color and texture changes 
almost impossible to track under some visual conditions [1-
3]. The concept of video segmentation and frame matching is 
also typical for any frame extraction procedure. In video 
processing, the closer the frames are to each other in terms of 
some metric, the harder is to pick up a boundary between 
them. The nature of segments and segmentation process itself 
is crucial for successful matching. The simplest way of 
segmenting video content is dividing it into fragments of 
equal length. Despite it may reduce time needed for 
processing for more than a half part, of course it is not a 
perfect idea of segmentation as a scene may appear in 
consecutive segments or several scenes may be contained in 
one segment. A strong post-processing is needed after such a 
temporal segmentation, which is very hard to ensure [4, 5]. 

Inter-frame difference (for cuts) and skipping frame 
difference (for dissolves) are considered to be the main 
sources for spatio-temporal segmentation. It can be measured 
by dissimilarity of pixels, frame blocks, or the whole frames. 
Among color feature comparison techniques, histogram 
difference gains most popularity and simplicity. Most of the 
current methods can cope with both kinds of inter-frame 
transitions (cuts and dissolves). When cuts occur, a method 
should detect changes in two consecutive frames, while for 

dissolves a method should analyze a number of consecutive 
frames to detect a new scene. Dissolves are harder to detect 
with traditionally used color-based methods only (or 
skipping frame difference should be used), but a good 
method should distinguish both kinds of transitions at the 
same video, as no one knows editor’s plans of video 
organization [4, 6]. 

More than fifty spatio-temporal segmentation and frame 
matching techniques are briefly observed in [7-15]. Such a 
large number approaches to the video segmentation and the 
shot detection indicate, on the one hand, the interest of 
scientists in these methods development, and on the other, 
the need to develop new ones, because there are no universal 
approaches suitable for analyzing arbitrary video data. The 
main problem they face lies in a variety of video content 
genres, without mentioning object and camera motion, 
flashes and other changes in lighting conditions. Most of the 
available methods take into account frame difference, 
without paying great attention to content which changes in 
time. Fig. 1 below details how frame matching techniques 
are distributed according to their popularity. The most widely 
used techniques that remain fundamental parts of the most 
successful approaches turn out to be color histograms and 
machine learning. Other techniques such as detecting camera 
flashes or working only in the compressed domain are not 
yet of widespread applicability [4, 7]. 

Fig. 1. Pie chart of the most popular frame matching techniques 

It is important to figure out how video frames should be 
compared to each other to determine exact and fuzzy 
matches. The next section outlines the novel unique model 
proposed for such purposes. It has been already mentioned 
that a good spatio-temporal segmentation is delimited by 
fades and wipes along with lighting conditions, camera angle 
change, etc. With this in mind, such a model should be 
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constructed that solves the aforementioned problems from 
mathematical and applied points. The model should also 
comply with existing standards along with contemporary 
level of video feature presentation and processing. After 
introducing the model, the latter section of the paper testifies 
its application significance and provides measures for 
estimation. 

II. VIDEO SEGMENT MATCHING MODEL

Consider an arbitrary metric space Ω  with a specified 
metric ( , )x yρ  where ,x y ∈ Ω . In addition, assume a set F  
which elements are finite sequences of elements from Ω . In 
fact, the set F  represents temporal segment in video Ω , 
which is a tuple of frames 1 2, ,..., nx x x . To be more 
precisely, this means 1 2( , ,..., )nx x x x F= ∈  if 

1 2, ,..., nx x x ∈ Ω , n  is an arbitrary non-negative integer that 
is greater than zero, and the order of elements 1 2, ,..., nx x x  is 
essential. In other words, they cannot be rearranged without 
changing the element from the set F . In this case, such 
sequences will be called tuples. Thus, the set F  is 
constructed from element tuples of the metric space Ω . 
Then, assume the following pattern on the set F . Introduce 
the notion of distance matrix for the tuple pair. 

Definition 1. Suppose matrix ( , )A x y  is the distance 
matrix for the pair of elements ,x y F∈ , which is 
constructed in the following way: 

Compare ( )card x n=  and ( )card y m= . Suppose the 
first tuple is less or equal to the second one n m≤ , then the 
fist row of distance matrix ( , )A x y  looks as follows: 

1 1 2 2( , ) ( , ) ( , )n nx y x y x yρ ρ ρ . The second row looks 
like: 1 2 2 3 1( , ) ( , ) ( , )n nx y x y x yρ ρ ρ + , etc. Then, s -th 
row is 1 2 1 1( , ) ( , ) ( , )s s n s nx y x y x yρ ρ ρ+ + − . Consequently, 
the number of rows in ( , )A x y  is equal to 1s m n= − + , and 
the matrix itself looks as follows: 

1 1

1 2 1

1 1

( , ) ( , )
( , ) ( , )( , )
( , ) ( , )

n n

n n

s n s n

x y x y
x y x yA x y
x y x y

ρ ρ
ρ ρ

ρ ρ

+

+ −

 
 =  
 
 




  


. (1) 

The size of the above matrix is s n× , taking into 
consideration that n m≤ , 1s m n= − + , ( )n card x= , 

( )m card y= . Assume the following properties of the marix 
( , )A x y . 

Property 1. If the distance matrix contains a zero row, 
then it means that the smaller tuple (in terms of cardinality) 
is fully included somewhere in the bigger one. In this case 
x y⊂ . 

Property 2. If the total number of elements in the first and 
the second tuple are equal to each other ( ) ( )card x card y= , 
then the distance matrix ( , )A x y  is constructed from a 
single row: 

1 1( , ) ( ( , ), , ( , ))n nA x y x y x yρ ρ=  . (2)

Property 3. When the two tuples are fully equal to each 
other x y= , then the distance matrix ( , )A x y  is constructed 
from a single zero row, and it looks like this: 

( , ) (0, , 0)A x y =  . (3)

Property 4. ( , ) ( , )A x y A y x=  for ,x y F∀ ∈ . 

All of the above properties follow from the definition of 
the distance matrix and from the fact that ( , )x yρ  is initially 
a metric. Now, consider a series of functionals for the set 
F F× , i.e. for its Cartesian square. Suppose ,x y F∈  and 

( ) ( )card x n m card y= ≤ = , then the following functionals 
are correspondent with them: 

1
1

2 1
1

1
1

( , ) ( , ),

( , ) ( , ),

( , ) ( , )

n

i i
i

n

i i
i

n

s i i s
i

g x y x y

g x y x y

g x y x y

ρ

ρ

ρ

=

+
=

+ −
=

=

=

=








(4)

where 1s m n= − + . The following theorem is held. 

Theorem 1. Each functional specified by the equations 
(4) is a metric on the set F .

The above theorem is easily proved by ensuring
reflexivity, symmetry and triangle inequality. 

Reflexivity. If the two tuples are fully equal to each other 
x y= , then from the Property 3 it follows that 

( , ) (0, , 0)A x y =  , i.e. there exists 1 ( , ) 0g x x = . 

Symmetry. Symmetry apparently follows from the 
Property 4. 

Triangle inequality. Triangle inequality can be explained 
using the example 1( , )g x y . Suppose there are three tuples 

, ,x y z . The following Fig. 2 illustrates these in a schematic 
manner. 

Then, it is clear that: 

Fig. 2. Triangle inequality for the three tuples 
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1
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where ( ) , ( ) , ( )card x n card y m card z k= = =  and 
n m k≤ ≤ . For the sake of certainty, consider 

1 1( , ) ( , )g x y g x z+ , then the following equation is held from 
(5): 

1 1
1

( , ) ( , ) [ ( , ) ( , )] .
n

i i i i
i

g x y g x z x y x zρ ρ
=

+ = +  (6)

As ( , )x yρ  is a metric, then the following is held for any 
i : 

1 1
1

( , ) ( , ) [ ( , ) ( , )] .
n

i i i i
i

g x y g x z x y x zρ ρ
=

+ = +  (7)

By taking equation (6) into account, the following can be 
obtained: 

1 1 1( , ) ( , ) ( , ) .g x y g x z g y z+ ≥ (8)

The other two couples of summands needed in the 
triangle inequality may be proved the same way, i.e. 

1 ( , )g x y  is a metric. Now, we shall explain why this 
theorem is held for all the other functionals in (4). With this, 
we understand it in case of their existence for particular tuple 
cardinalities. The following Fig. 3 shows this relation in a 
form of a schema. 

The number of functionals in (4) corresponds to the 
number of times the smallest tuple can be included into the 
medium-sized tuple. For those number of functionals it is 
essential to consider the triangle inequality. At the end, we 
may conclude that 1 ( , )g x y  always exists. The theorem is 
proved. 

Fig. 3. Schema of possible relations between the three tuples 

Consider the functional ( , )g x y  as the sum of all the 
elements in the distance matrix. It is easily seen that this 
functional is symmetric and reflexive as well as 1( , )g x y . 
The triangle inequality should be observed separately. 
Suppose ( ) ( ) ( )card x card y card z n= = = , then the 

distance matrices ( , ), ( , ), ( , )A x y A x z A y z  will look as (2), 
and the functionals ( , ), ( , ), ( , )g x y g x z g y z  will look as 
(4). By analogy to the theorem 1, the triangle inequality is 
grounded for ( , )g x y . By transferring to a more general 
case, consider ( ) , ( ) , ( )card x n card y m card z k= = = . 
Assume the following relations are held: 

1

2

,
,
.

n m k
m n s
k m s

≤ ≤ − =
− =

(9)

It is clear that 1 2k n s s− = + , and the distance matrices 
will look as follows: 

1
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2 2

1 1

11

1 1

1 1

1 1

1 1

( , )( , )

( , ) ,

( , )( , )

( , )( , )

( , ) ,

( , ) ( , )

( , )( , )

( , ) .

( , ) ( , )

n n

n s ns

n n

s s n s s n

m m

s m s m

x yx y

A x y

x yx y

x zx z

A x z

x z x z

y zy z

A y z

y z y z

ρρ

ρρ

ρρ

ρ ρ

ρρ

ρ ρ

+ −

+ + + −

+ −

 
 
 =
 
 
 

 
 
 =
 
 
 

 
 
 =
 
 
 


  




  




  



(10)

The following equations can be obtained from the above: 
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1 2 1 2
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= + + +
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ρ ρ
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ρ ρ
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The equations in (11) enable checking triangle inequality 
directly. By rearranging the summands and assuming that 

( , )x yρ  is a metric, this check testifies fulfillment of the 
triangle inequality in a general case. The following section 
provides information on the model implementation on video 
sequences and estimation of the results. To enhance this 
paradigm in future, it may be interesting to divide the first 
(smaller) set into subsets and perform search of these smaller 
subsets in the second (bigger) set. The practical application 
of it seems quite trivial as not always the whole video scene 
is repeated, but a small fragment of it. 

III. EXPERIMENTAL RESULT 

Assume Ω  is a video sequence of frames. Let ( , )x yρ  
be a metric or a distance between the two elements from this 
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set Ω . Here, x  and y  are minimum possible video 
elements, i.e. frames in case of video. Suppose 

1 2( , ,..., )nx x x x F= ∈ , 1 2( , ,..., )my y y y F= ∈  where F  is a 
set of all the scenes in a video. Thus, x  and y  are the two 
video segments (fragments or scenes) for comparison, and 

1 2, ,..., nx x x  and 1 2, ,..., my y y  are the frames in these 
segments, which number equals to n  and m  respectively. 
The above matrix (1) indicates how two scenes match each 
other.  

For example, as a first sequence, a fragment of a 
documentary was taken, illustrating the rescue helicopter 
crash. In Fig. 4 a) the complete video sequence is shown in 
the form of 501 frames, which can be divided into a set of 
segments by the video spatio-temporal segmentation 
approaches proposed in [4,16]. As a result, you can get the 
following partition: the first segment, 1..66 frames are 
illustrating the lone flight of the helicopter; 67...151 frames 
are helicopter flight against the shore; 152...260 frames are 
the landing process and rescuers work; 261...332 frames are 
departure of the rescue helicopter; 333...451 frames are the 
process of crash; 451...501 frames are segment showing the 
result of the rescue helicopter crash into the water. 

Next, for the experiment, the first and last segments from 
the original data were taken, with a length of 66 and 49 
frames, respectively. Examples of frames from this sequence 
are shown in Fig. 4 b) and c). 

To these segments, the same approach to segmentation 
was applied similarly and the results corresponding to these 
segments were obtained. The graphs in Fig. 5 illustrate 
result of video segmentation for all 3 video. Despite the fact 
that the segmentation approach was applied to different 
sequences, the values obtained for segments 4b) and c) 
correspond to values  

Fig. 4. Example of initial video data and segments to compare 

in the intervals from 1 to 66 frames and from 452 to 501 
frames of the original video data. It is quite logical that when 
we using the proposed metric for comparison with the initial 
sequence (Fig. 4a)) one of the analyzed segments (Fig. 4b) or 

Fig. 4c)), we obtained at the appropriate places of the 
distance matrix (1) a zero sequences values 66 and 49 
frames, respectively. 

Thus, we can compare video sequences and find the same 
or similar if we establish a certain threshold value for 
possible differences in the distance matrix (1). In other 
words, if we compare the results of different video sequences 
segmentation with the proposed approach, we obtain a 
certain sequence in the distance matrix whose values do not 
exceed the established threshold, then we can say about the 
similarity of the compared data, and in the case of obtaining 
a zero sequences about the conjunction of the compared data 
corresponding parts. 

Fig. 5. Result of spatio-temporal video segmentation 

IV. CONCLUSION 

The novel proposed model may be effectively 
implemented for video scene comparison. The effectiveness 
of it can be testified by traditional precision-recall metrics in 
terms of finding perfect matches for the subsets under 
analysis. For video content presentation and scene 
comparison, temporal segmentation plays the key role 
because extraction of correct scene fragment duplicate is 
basically what we are trying to reach using the model. 
Precision-recall metrics reveals correspondence of 
multidimensional data processing results to human 
expectations from mental analysis of such data. Although 
this estimation is performed by human experts, which may 
be subjective in a sense, the combination of metric 
parameters more precisely indicates opportunities of the 
model. The true positives show how many relevant frame 
sequences are extracted. The false positives are considered 
being mismatches of extracted segments. The false negatives 
are the omitted segments that should actually be extracted. 
The true negatives are not being used as they are the inverse 
from the above [18, 19]. The only drawback of the 
estimation is that it does not take into account fuzzy matches 
and half-satisfaction of the experts, which may be the topic 
of further research. 

REFERENCES 
[1] D. Schonfeld, et. al., Video search and mining. Studies in

Computational Intelligence. Springer, Berlin, 2010. 
[2] R. Szeliski, Computer vision. Algorithms and applications. Springer,

London, 2011. 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



553 

[3] L. Chen, and F. W. M. Stentiford “Video sequence matching based on 
temporal ordinal measurement,” Pattern Recognition Letters., vol. 29,
pp. 1824-1831, 2008. 

[4] S. Mashtalir, and O. Mikhnova, “Key frame extraction from video:
framework and advances,” J. Computer Vision and Image Processing.
vol. 4(2), pp. 67-78,  2014. (https://www.igi-global.com/article/key-
frame-extraction-from-video/115840) 

[5] H. Lu, and Y.-P. Tan, “An effective post-refinement method for shot
boundary detection,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 15(11), pp. 1407–1421, November, 2005. 

[6] W. Heng, and K. Ngan, “Shot boundary refinement for long transition
in digital video sequence”, IEEE Transactions on Multimedia, vol.
4(4), pp. 434-445, December, 2002. 

[7] A. F. Smeaton, P. Over, and A. R. Doherty, “Video shot boundary
detection: Seven years of TRECVid activity,” J. Computer Vision and
Image Understanding. vol. 114(4), pp. 411-418, 2010.

[8] Zhang Y.-J. (ed.), Advances in image and video segmentation.
Hershey- London-Melbourne-Singapore: IRM Press, 2006.

[9] S. Porter, M. Mirmehdi, and B. Thomas, “Temporal video
segmentation and classification of edit effects”, Image and Vision
Computing., vol. 21, pp. 1097-1106, December 2003. 

[10] S. Piramanayagam, E. Saber, N. D. Cahill, and D. Messinger, “Shot
boundary detection and label propagation for spatio-temporal video
segmentation” Proc. SPIE 9405, Image Processing: Machine Vision
Applications VIII, 94050D 7 p., February 2015. 

[11] S. Thakare, “Intelligent processing and analysis of image for shot
boundary detection,” International Journal of Emerging Technology

and Advanced Engineering., vol. 2, no. 2, pp. 208-212, Mar.-Apr. 
2012.  

[12] R. Vázquez-Martín, and A. Bandera, “Spatio-temporal feature-based
keyframe detection from video shots using spectral clustering,”
Pattern Recognition Letters, vol. 34, no. 7,  pp. 770-779, 2013. 

[13] G. I. Rathod, and D.A. Nikam, “An algorithm for shot boundary
detection and key frame extraction using histogram difference,” Int. J.
Emerging Technology and Advanced Engineering, vol. 3(8), pp. 155-
163, August, 2013. 

[14] J. Nesvadba, F. Ernst, J. Perhavc, J. Benois-Pineau, and L. Primaux,
“Comparison of shot boundary detectors”, Int. Conf. on Multimedia
and Expo, IEEE Press, Amsterdam, pp. 6-8, 2005.

[15] H. Jiang, G. Zhang, H. Wang and H. Bao, “Spatio-temporal video
segmentation of static scenes and its applications”  IEEE Transactions
on Multimedia., vol. 17, no. 1, pp. 3-15, January, 2015. 

[16] Y. Bodyanskiy, D. Kinoshenko, S. Mashtalir, and O. Mikhnova, “On-
line video segmentation using methods of fault detection in
multidimensional time sequences”, Int. J. of Electronic Commerce
Studies, vol. 3(1), pp. 1-20, 2012. 

[17] O. Mikhnova, and N. Vlasenko, “Key frame partition matching for
video summarization,” Int. J. of Information Models and Analyses,
vol. 2(2), pp. 145-152, 2013. 

[18] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to
Information Retrieval. Cambridge University Press, Cambridge, 2008. 

[19] S. V. Mashtalir, and O. D. Mikhnova, “Stabilization of key frame
descriptions with higher order Voronoi diagram”, J. Bionics of
intelligence. vol. 1, pp. 68-72, 2013. 

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua


