DC Field | Value | Language |
dc.contributor.author | Hurtik, Petr | |
dc.contributor.author | Číž, David | |
dc.contributor.author | Kaláb, Oto | |
dc.contributor.author | Musiolek, David | |
dc.contributor.author | Kočárek, Petr | |
dc.contributor.author | Tomis, Martin | |
dc.coverage.temporal | 21-25 August 2018, Lviv | |
dc.date.accessioned | 2020-06-19T12:04:31Z | - |
dc.date.available | 2020-06-19T12:04:31Z | - |
dc.date.created | 2018-02-28 | |
dc.date.issued | 2018-02-28 | |
dc.identifier.citation | Software for Visual Insect Tracking Based on F-transform Pattern Matching / Petr Hurtik, David Číž, Oto Kaláb, David Musiolek, Petr Kočárek, Martin Tomis // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 528–533. — (Machine Vision and Pattern Recognition). | |
dc.identifier.isbn | © Національний університет „Львівська політехніка“, 2018 | |
dc.identifier.isbn | © Національний університет „Львівська політехніка“, 2018 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/52438 | - |
dc.description.abstract | We introduce a problem of tracking small animals,
especially insects. To solve this problem, we focus on visual
tracking in recorded movies, propose our pattern tracking
mechanism based on F-transform, and implement a user-friendly
software to handle the movies. The tracking core is compared
with five state-of-the-art tracking algorithms: KCF, MIL, TLD,
Boosting and MedianFlow from processing time and algorithm
failure rate point of views. Based on the results computed from
1000 movie frames, we observed that the proposed F-transform
tracking core is the fastest and the most reliable method. | |
dc.format.extent | 528-533 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Data stream mining and processing : proceedings of the IEEE second international conference, 2018 | |
dc.subject | Gryllus Assimilis | |
dc.subject | insect tracking | |
dc.subject | visual tracking | |
dc.subject | F-transform | |
dc.subject | pattern matching | |
dc.subject | 4k movie | |
dc.title | Software for Visual Insect Tracking Based on F-transform Pattern Matching | |
dc.type | Conference Abstract | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2018 | |
dc.contributor.affiliation | University of Ostrava | |
dc.contributor.affiliation | VSB-TU Ostrava | |
dc.format.pages | 6 | |
dc.identifier.citationen | Software for Visual Insect Tracking Based on F-transform Pattern Matching / Petr Hurtik, David Číž, Oto Kaláb, David Musiolek, Petr Kočárek, Martin Tomis // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 528–533. — (Machine Vision and Pattern Recognition). | |
dc.relation.references | [1] R. Kays, M. C. Crofoot, W. Jetz, and M. Wikelski, “Terrestrial animal tracking as an eye on life and planet,” Science, vol. 348, no. 6240, p. aaa2478, 2015. | |
dc.relation.references | [2] M. Wikelski, R. W. Kays, N. J. Kasdin, K. Thorup, J. A. Smith, and G. W. Swenson, “Going wild: what a global small-animal tracking system could do for experimental biologists,” Journal of Experimental Biology, vol. 210, no. 2, pp. 181–186, 2007. | |
dc.relation.references | [3] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah, “Visual tracking: An experimental survey,” IEEE transactions on pattern analysis and machine intelligence, vol. 36, no. 7, pp. 1442–1468, 2014. | |
dc.relation.references | [4] P. Hurtik and P. Stevuli ˇ akov ´ a, “Pattern matching: overview, benchmark ´ and comparison with f-transform general matching algorithm,” Soft Computing, vol. 21, no. 13, pp. 3525–3536, 2017. | |
dc.relation.references | [5] M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. Van de Weijer, “Adaptive color attributes for real-time visual tracking,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, USA, June 24-27, 2014. IEEE Computer Society, 2014, pp. 1090–1097. | |
dc.relation.references | [6] F. S. Khan, J. Van de Weijer, and M. Vanrell, “Modulating shape features by color attention for object recognition,” International Journal of Computer Vision, vol. 98, no. 1, pp. 49–64, 2012. | |
dc.relation.references | [7] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,” IEEE transactions on pattern analysis and machine intelligence, vol. 34, no. 7, pp. 1409–1422, 2012. | |
dc.relation.references | [8] B. Babenko, M.-H. Yang, and S. Belongie, “Visual tracking with online multiple instance learning,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 983–990. | |
dc.relation.references | [9] C. Ji and S. Ma, “Combinations of weak classifiers,” in Advances in Neural Information Processing Systems, 1997, pp. 494–500. | |
dc.relation.references | [10] H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking via on-line boosting.” in Bmvc, vol. 1, no. 5, 2006, p. 6. | |
dc.relation.references | [11] H. Grabner and H. Bischof, “On-line boosting and vision,” in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 1. Ieee, 2006, pp. 260–267. | |
dc.relation.references | [12] Z. Kalal, K. Mikolajczyk, and J. Matas, “Forward-backward error: Automatic detection of tracking failures,” in Pattern recognition (ICPR), 2010 20th international conference on. IEEE, 2010, pp. 2756–2759. | |
dc.relation.references | [13] B. D. Lucas, T. Kanade et al., “An iterative image registration technique with an application to stereo vision,” IJCAI, vol. 81, p. 674–679, 1981. | |
dc.relation.references | [14] P. Hurtik, P. Hodakov ´ a, and I. Perfilieva, “Approximate pattern matching ´ algorithm,” in International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer, 2016, pp. 577–587. | |
dc.relation.references | [15] I. Perfilieva, “Fuzzy transforms: Theory and applications,” Fuzzy sets and systems, vol. 157, no. 8, pp. 993–1023, 2006. | |
dc.relation.references | [16] D.-J. Jwo and S.-H. Wang, “Adaptive fuzzy strong tracking extended kalman filtering for gps navigation,” IEEE Sensors Journal, vol. 7, no. 5, pp. 778–789, 2007 | |
dc.relation.referencesen | [1] R. Kays, M. C. Crofoot, W. Jetz, and M. Wikelski, "Terrestrial animal tracking as an eye on life and planet," Science, vol. 348, no. 6240, p. aaa2478, 2015. | |
dc.relation.referencesen | [2] M. Wikelski, R. W. Kays, N. J. Kasdin, K. Thorup, J. A. Smith, and G. W. Swenson, "Going wild: what a global small-animal tracking system could do for experimental biologists," Journal of Experimental Biology, vol. 210, no. 2, pp. 181–186, 2007. | |
dc.relation.referencesen | [3] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah, "Visual tracking: An experimental survey," IEEE transactions on pattern analysis and machine intelligence, vol. 36, no. 7, pp. 1442–1468, 2014. | |
dc.relation.referencesen | [4] P. Hurtik and P. Stevuli ˇ akov ´ a, "Pattern matching: overview, benchmark ´ and comparison with f-transform general matching algorithm," Soft Computing, vol. 21, no. 13, pp. 3525–3536, 2017. | |
dc.relation.referencesen | [5] M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. Van de Weijer, "Adaptive color attributes for real-time visual tracking," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, USA, June 24-27, 2014. IEEE Computer Society, 2014, pp. 1090–1097. | |
dc.relation.referencesen | [6] F. S. Khan, J. Van de Weijer, and M. Vanrell, "Modulating shape features by color attention for object recognition," International Journal of Computer Vision, vol. 98, no. 1, pp. 49–64, 2012. | |
dc.relation.referencesen | [7] Z. Kalal, K. Mikolajczyk, and J. Matas, "Tracking-learning-detection," IEEE transactions on pattern analysis and machine intelligence, vol. 34, no. 7, pp. 1409–1422, 2012. | |
dc.relation.referencesen | [8] B. Babenko, M.-H. Yang, and S. Belongie, "Visual tracking with online multiple instance learning," in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 983–990. | |
dc.relation.referencesen | [9] C. Ji and S. Ma, "Combinations of weak classifiers," in Advances in Neural Information Processing Systems, 1997, pp. 494–500. | |
dc.relation.referencesen | [10] H. Grabner, M. Grabner, and H. Bischof, "Real-time tracking via on-line boosting." in Bmvc, vol. 1, no. 5, 2006, p. 6. | |
dc.relation.referencesen | [11] H. Grabner and H. Bischof, "On-line boosting and vision," in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 1. Ieee, 2006, pp. 260–267. | |
dc.relation.referencesen | [12] Z. Kalal, K. Mikolajczyk, and J. Matas, "Forward-backward error: Automatic detection of tracking failures," in Pattern recognition (ICPR), 2010 20th international conference on. IEEE, 2010, pp. 2756–2759. | |
dc.relation.referencesen | [13] B. D. Lucas, T. Kanade et al., "An iterative image registration technique with an application to stereo vision," IJCAI, vol. 81, p. 674–679, 1981. | |
dc.relation.referencesen | [14] P. Hurtik, P. Hodakov ´ a, and I. Perfilieva, "Approximate pattern matching ´ algorithm," in International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer, 2016, pp. 577–587. | |
dc.relation.referencesen | [15] I. Perfilieva, "Fuzzy transforms: Theory and applications," Fuzzy sets and systems, vol. 157, no. 8, pp. 993–1023, 2006. | |
dc.relation.referencesen | [16] D.-J. Jwo and S.-H. Wang, "Adaptive fuzzy strong tracking extended kalman filtering for gps navigation," IEEE Sensors Journal, vol. 7, no. 5, pp. 778–789, 2007 | |
dc.citation.conference | IEEE second international conference "Data stream mining and processing" | |
dc.citation.spage | 528 | |
dc.citation.epage | 533 | |
dc.coverage.placename | Львів | |
Appears in Collections: | Data stream mining and processing : proceedings of the IEEE second international conference
|