Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/52438
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHurtik, Petr
dc.contributor.authorČíž, David
dc.contributor.authorKaláb, Oto
dc.contributor.authorMusiolek, David
dc.contributor.authorKočárek, Petr
dc.contributor.authorTomis, Martin
dc.coverage.temporal21-25 August 2018, Lviv
dc.date.accessioned2020-06-19T12:04:31Z-
dc.date.available2020-06-19T12:04:31Z-
dc.date.created2018-02-28
dc.date.issued2018-02-28
dc.identifier.citationSoftware for Visual Insect Tracking Based on F-transform Pattern Matching / Petr Hurtik, David Číž, Oto Kaláb, David Musiolek, Petr Kočárek, Martin Tomis // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Львів : Lviv Politechnic Publishing House, 2018. — P. 528–533. — (Machine Vision and Pattern Recognition).
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.isbn© Національний університет „Львівська політехніка“, 2018
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/52438-
dc.description.abstractWe introduce a problem of tracking small animals, especially insects. To solve this problem, we focus on visual tracking in recorded movies, propose our pattern tracking mechanism based on F-transform, and implement a user-friendly software to handle the movies. The tracking core is compared with five state-of-the-art tracking algorithms: KCF, MIL, TLD, Boosting and MedianFlow from processing time and algorithm failure rate point of views. Based on the results computed from 1000 movie frames, we observed that the proposed F-transform tracking core is the fastest and the most reliable method.
dc.format.extent528-533
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofData stream mining and processing : proceedings of the IEEE second international conference, 2018
dc.subjectGryllus Assimilis
dc.subjectinsect tracking
dc.subjectvisual tracking
dc.subjectF-transform
dc.subjectpattern matching
dc.subject4k movie
dc.titleSoftware for Visual Insect Tracking Based on F-transform Pattern Matching
dc.typeConference Abstract
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.contributor.affiliationUniversity of Ostrava
dc.contributor.affiliationVSB-TU Ostrava
dc.format.pages6
dc.identifier.citationenSoftware for Visual Insect Tracking Based on F-transform Pattern Matching / Petr Hurtik, David Číž, Oto Kaláb, David Musiolek, Petr Kočárek, Martin Tomis // Data stream mining and processing : proceedings of the IEEE second international conference, 21-25 August 2018, Lviv. — Lviv Politechnic Publishing House, 2018. — P. 528–533. — (Machine Vision and Pattern Recognition).
dc.relation.references[1] R. Kays, M. C. Crofoot, W. Jetz, and M. Wikelski, “Terrestrial animal tracking as an eye on life and planet,” Science, vol. 348, no. 6240, p. aaa2478, 2015.
dc.relation.references[2] M. Wikelski, R. W. Kays, N. J. Kasdin, K. Thorup, J. A. Smith, and G. W. Swenson, “Going wild: what a global small-animal tracking system could do for experimental biologists,” Journal of Experimental Biology, vol. 210, no. 2, pp. 181–186, 2007.
dc.relation.references[3] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah, “Visual tracking: An experimental survey,” IEEE transactions on pattern analysis and machine intelligence, vol. 36, no. 7, pp. 1442–1468, 2014.
dc.relation.references[4] P. Hurtik and P. Stevuli ˇ akov ´ a, “Pattern matching: overview, benchmark ´ and comparison with f-transform general matching algorithm,” Soft Computing, vol. 21, no. 13, pp. 3525–3536, 2017.
dc.relation.references[5] M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. Van de Weijer, “Adaptive color attributes for real-time visual tracking,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, USA, June 24-27, 2014. IEEE Computer Society, 2014, pp. 1090–1097.
dc.relation.references[6] F. S. Khan, J. Van de Weijer, and M. Vanrell, “Modulating shape features by color attention for object recognition,” International Journal of Computer Vision, vol. 98, no. 1, pp. 49–64, 2012.
dc.relation.references[7] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,” IEEE transactions on pattern analysis and machine intelligence, vol. 34, no. 7, pp. 1409–1422, 2012.
dc.relation.references[8] B. Babenko, M.-H. Yang, and S. Belongie, “Visual tracking with online multiple instance learning,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 983–990.
dc.relation.references[9] C. Ji and S. Ma, “Combinations of weak classifiers,” in Advances in Neural Information Processing Systems, 1997, pp. 494–500.
dc.relation.references[10] H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking via on-line boosting.” in Bmvc, vol. 1, no. 5, 2006, p. 6.
dc.relation.references[11] H. Grabner and H. Bischof, “On-line boosting and vision,” in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 1. Ieee, 2006, pp. 260–267.
dc.relation.references[12] Z. Kalal, K. Mikolajczyk, and J. Matas, “Forward-backward error: Automatic detection of tracking failures,” in Pattern recognition (ICPR), 2010 20th international conference on. IEEE, 2010, pp. 2756–2759.
dc.relation.references[13] B. D. Lucas, T. Kanade et al., “An iterative image registration technique with an application to stereo vision,” IJCAI, vol. 81, p. 674–679, 1981.
dc.relation.references[14] P. Hurtik, P. Hodakov ´ a, and I. Perfilieva, “Approximate pattern matching ´ algorithm,” in International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer, 2016, pp. 577–587.
dc.relation.references[15] I. Perfilieva, “Fuzzy transforms: Theory and applications,” Fuzzy sets and systems, vol. 157, no. 8, pp. 993–1023, 2006.
dc.relation.references[16] D.-J. Jwo and S.-H. Wang, “Adaptive fuzzy strong tracking extended kalman filtering for gps navigation,” IEEE Sensors Journal, vol. 7, no. 5, pp. 778–789, 2007
dc.relation.referencesen[1] R. Kays, M. C. Crofoot, W. Jetz, and M. Wikelski, "Terrestrial animal tracking as an eye on life and planet," Science, vol. 348, no. 6240, p. aaa2478, 2015.
dc.relation.referencesen[2] M. Wikelski, R. W. Kays, N. J. Kasdin, K. Thorup, J. A. Smith, and G. W. Swenson, "Going wild: what a global small-animal tracking system could do for experimental biologists," Journal of Experimental Biology, vol. 210, no. 2, pp. 181–186, 2007.
dc.relation.referencesen[3] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah, "Visual tracking: An experimental survey," IEEE transactions on pattern analysis and machine intelligence, vol. 36, no. 7, pp. 1442–1468, 2014.
dc.relation.referencesen[4] P. Hurtik and P. Stevuli ˇ akov ´ a, "Pattern matching: overview, benchmark ´ and comparison with f-transform general matching algorithm," Soft Computing, vol. 21, no. 13, pp. 3525–3536, 2017.
dc.relation.referencesen[5] M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. Van de Weijer, "Adaptive color attributes for real-time visual tracking," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, USA, June 24-27, 2014. IEEE Computer Society, 2014, pp. 1090–1097.
dc.relation.referencesen[6] F. S. Khan, J. Van de Weijer, and M. Vanrell, "Modulating shape features by color attention for object recognition," International Journal of Computer Vision, vol. 98, no. 1, pp. 49–64, 2012.
dc.relation.referencesen[7] Z. Kalal, K. Mikolajczyk, and J. Matas, "Tracking-learning-detection," IEEE transactions on pattern analysis and machine intelligence, vol. 34, no. 7, pp. 1409–1422, 2012.
dc.relation.referencesen[8] B. Babenko, M.-H. Yang, and S. Belongie, "Visual tracking with online multiple instance learning," in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 983–990.
dc.relation.referencesen[9] C. Ji and S. Ma, "Combinations of weak classifiers," in Advances in Neural Information Processing Systems, 1997, pp. 494–500.
dc.relation.referencesen[10] H. Grabner, M. Grabner, and H. Bischof, "Real-time tracking via on-line boosting." in Bmvc, vol. 1, no. 5, 2006, p. 6.
dc.relation.referencesen[11] H. Grabner and H. Bischof, "On-line boosting and vision," in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 1. Ieee, 2006, pp. 260–267.
dc.relation.referencesen[12] Z. Kalal, K. Mikolajczyk, and J. Matas, "Forward-backward error: Automatic detection of tracking failures," in Pattern recognition (ICPR), 2010 20th international conference on. IEEE, 2010, pp. 2756–2759.
dc.relation.referencesen[13] B. D. Lucas, T. Kanade et al., "An iterative image registration technique with an application to stereo vision," IJCAI, vol. 81, p. 674–679, 1981.
dc.relation.referencesen[14] P. Hurtik, P. Hodakov ´ a, and I. Perfilieva, "Approximate pattern matching ´ algorithm," in International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer, 2016, pp. 577–587.
dc.relation.referencesen[15] I. Perfilieva, "Fuzzy transforms: Theory and applications," Fuzzy sets and systems, vol. 157, no. 8, pp. 993–1023, 2006.
dc.relation.referencesen[16] D.-J. Jwo and S.-H. Wang, "Adaptive fuzzy strong tracking extended kalman filtering for gps navigation," IEEE Sensors Journal, vol. 7, no. 5, pp. 778–789, 2007
dc.citation.conferenceIEEE second international conference "Data stream mining and processing"
dc.citation.spage528
dc.citation.epage533
dc.coverage.placenameЛьвів
Appears in Collections:Data stream mining and processing : proceedings of the IEEE second international conference

Files in This Item:
File Description SizeFormat 
2018_Hurtik_P-Software_for_Visual_Insect_528-533.pdf473.49 kBAdobe PDFView/Open
2018_Hurtik_P-Software_for_Visual_Insect_528-533__COVER.png1.62 MBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.