
IEEE Second International Conference on Data Stream Mining & Processing

August 21-25, 2018, Lviv, Ukraine

Software for Visual Insect Tracking Based on
F-transform Pattern Matching

Petr Hurtik

IRAFM, CEIT4I University
of Ostrava Ostrava, Czech

Republic petr.hurtik@osu.cz

David Čı́ ž
Department of informatics and computers

University of Ostrava

Ostrava, Czech Republic

davidciz95@gmail.com

Oto Kaláb

Department of Biology and Ecology
University of Ostrava

Ostrava, Czech Republic

kalab.oto@gmail.com

David Musiolek

Department of Biology and Ecology
University of Ostrava

Ostrava, Czech Republic

david.musiolek@osu.cz

Petr Kočárek

Department of Biology and Ecology
University of Ostrava

Ostrava, Czech Republic

petr.kocarek@osu.cz

Martin Tomis

Department of Telecommunications
VSB-TU Ostrava

Ostrava, Czech Republic

martin.tomis@osu.cz

Abstract—We introduce a problem of tracking small animals,
especially insects. To solve this problem, we focus on visual
tracking in recorded movies, propose our pattern tracking
mechanism based on F-transform, and implement a user-friendly
software to handle the movies. The tracking core is compared
with five state-of-the-art tracking algorithms: KCF, MIL, TLD,
Boosting and MedianFlow from processing time and algorithm
failure rate point of views. Based on the results computed from
1000 movie frames, we observed that the proposed F-transform
tracking core is the fastest and the most reliable method.

Index Terms—Gryllus Assimilis, insect tracking, visual track-
ing, F-transform, pattern matching, 4k movie

I. INTRODUCTION

In Zoology field, transmitters placed onto animals are used

to track animal paths and therefore help to understand the

behavior of the tracked object. In the case of big animals such

as wolfs, tigers etc., there are many publications dealing with

such tracking, see e.g., [1] and [2]. In those cases, transmitters

are small enough to be placed on such big animals without

affecting their behavior or ability to move. Problems ensue

when biologists want to track insects because the transmitters

weight and size can affect the insect’s behavior and therefore

invalidate the research. In our work, we investigate the impact

of various transmitters on insects, namely on a field cricket,

Gryllus assimilis (Orthoptera), in order to define a safe weight

an insect can carry without it influencing its movement. To

formulate such statement, we need to record statistically big

enough quantity of insects with various transmitters and track

their movement. Because of the recorded data size, it is not

possible to track them manually, therefore we have to design

automated tracking software. The design of such application is

the topic and the main goal of this paper. The paper structure is

following: at first, we briefly describe visual tracking process

in Section II and then we recall state-of-the-art software and

algorithms for pattern tracking in Section III. Our own pattern

Fig. 1. Illustration of the task goal: tracked movement of insects in an arena.

tracking algorithm is described in Section IV. The detailed

description of the considered insect tracking task with its

obstacles, application design and benchmarking are the aims

of Section V. Finally, conclusions are formulated in Section

VI.

II. PATTERN TRACKING

Visual pattern tracking (tracing) [3] can be viewed as a

special case of pattern matching technique [4]. Generally,

pattern matching is searching and checking given object(s)

(image where an insect is captured, in our case) for a pres-

ence of given patterns (images) in order to find and mark

the patterns locations (if any) within the given objects. The

matching can be exact or approximate. In the exact one, the

pattern appears in its exact form while in the approximate

one, it is allowed some freedom between the pattern and its

found match. Formally, we expect computer two-dimensional

image f : D → L, D = {1, 2, . . . ,W} × {1, 2, . . . , H}

978-1-5386-2874-4/18/ $31.00 ©2018 European Union 528

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

and L = {0, 1, . . . 2n − 1}c, where W and H is width and

height respectively, n denotes considered bit depth (amount

of intensities, standardly n = 8) and c denotes number of

color channels, i.e., c = 1 for a grayscale image and c = 3
for, e.g., RGB color model. Such image function is a space

(usually called as a database) where we search pattern for. As

a pattern, we consider image f ′ : D′
→ L, which is a proper

inclusion of f and |D′
| ≤ |D| holds. The goal is to browse f

and find inside it a sub-area fs such DistDist(fs, fp), where

Dist is a metric is minimal for all possible considered sub-

areas.

The pattern tracking instead of one image f consider a

database of functions f = {f1, f3, . . . , ft}, where the image

functions are captured in various time moments. As a typical

representative, we can mention a movie from a camera de-

composed into particular images, called frames. The point is

that a frame has not be matched fully in all frames. Because

of the images in a database are supposed to be time-ordered

and we know previous pattern location, we can search for the

pattern in a ∆-neighborhood of the previous pattern location

in an actual frame, where ∆ is maximal considered pattern

movement between frames. Further, because the previous pat-

tern locations are known, we can determine pattern trajectory

and approximate it in future frames in order to create a more

precise match or to continue with tracking even if the pattern

is covered by another object.

III. EXISTING SOFTWARE AND ALGORITHMS

In this paper, we will describe own made software for insect

tracking, which will be benchmarked. In order to compare

the software, we will describe current existing solutions and

algorithms in this section.

A. Existing solutions in the form of software

During solving the problem, we searched for a full software

dealing with the insect tracking problem at first. We omitted

old, unsupported software and handled for different applica-

tions. The list of investigated applications is following.

Ctrax1 is a software specialized in tracking walking flies.

Unfortunately, we were not able to read the movie by the

application even if it was converted from mp4 into avi file as

is stated in the application manual.

Bio-Records2 is aimed on general insect tracking. We were

not able to use the application because it is not available for

Windows operating system. The reason why we mention it

is it is known in zoology field and because its web page

and youtube presentation movies are impressing. On the other

hand, even in their short demonstration movie3 there are

visible a lot of cases when insect tracking fails.

Noldus animal tracker4 At least by the software price and its

presentation, it is one-of-the-best software for animal tracking.

1http://ctrax.sourceforge.net/
2http://www.bio-tracking.org
3http://www.youtube.com/watch?v=T5W0iplroSg
4http://www.noldus.com/animal-behavior-research

We tried to obtain free trial version, but we were not successful

in a negotiation process with the company.

SwisTrack5 more than a complex tracking software, it is a

package of basic graphical operations which can be stylized

by a user into full algorithm serving as a tracker. We faced

the same problem as in the case of Ctrax - the software was

unable to open our movie, it shows ”codec missing” even if we

have had installed required codecs according to the reference

manual.

Winanalyze6 is a software for a general tracking such

as movement tracking etc. Our experience is the software

critically crashed when a movie was opened.

As it is obvious, no one of the investigated software can be

used to solve our task. The general problem is the applications

are designed for one particular task without enough generality

which is caused, e.g., by supporting minimum input file types.

B. Existing algorithms

To be our current state overview complete, we investigated

also state-of-the-art pattern tracking algorithms which we used

as a core in our implemented application described in Section

V-B. The list of tested algorithms is following.

Adaptive color attributes tracker (KCF) [5]: Danelljan et al.

propose to improve CSK tracker [6] which compares two bag-

of-words of patterns, where words are shapes and colors. The

improvement relies on adding more extracted color features.

The benefit of the algorithm is it runs in real-time for a

reasonable-big (small) movie resolution.

Tracking-Learning-Detection (TLD) [7]: the approach idea

is not to accumulate error between initialized pattern and

actual one in long-term tracking. This approach is similar to

the idea of our algorithm and it realizes three steps: tracking,

position improving and pattern re-learning. Pattern position

is improved by performing pattern matching while pattern-

relearning use actual detected area as the pattern when a

distance between the pattern and the searched pattern is big

enough.

Online Multiple Instance Learning (MIL) [8]: the algorithm

works with a set of patches around the selected pattern, placed

into bag-of-words in order to work as a weak classifier [9].

Real-Time Tracking via On-line Boosting [10]: the algorithm

is based on the original on-line AdaBoost [11], i.e., it uses a lot

of weak classifiers in order to establish a strong one. The ben-

efit of the algorithm is that, at first, it can adapt itself to pattern

changes online and, at second, the performance in comparison

with the original work is improved because author designed

so-called ”global weak classifier” which allows updating all

selectors in time.

Median Flow [12]: authors use Lucas-Kanade tracker [13]

and improve it by tracking trajectory. In opposite to standard

algorithms which process ascending frames, Median Flow

tracks both ascending and descending frames, search for

irregularities in searched locations given by Lucas-Kanade

tracker and filter them out.

5https://en.wikibooks.org/wiki/SwisTrack
6https://winanalyze.com

529

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

IV. F-TRANSFORM PATTERN TRACKING

In this section, we will briefly describe how our tracking

algorithm works. It is based on our general pattern matching

algorithm [4] and because its speed is superior [14], we are

able to follow the idea ”tracking by matching” without signif-

icant loosing of performance and achieving high precision.

The algorithm is based on the idea of transforming images

from their domain into a reduced domain using F-transform

[15]. We can define the direct F-transform of a discrete

function f of two variables defined on [1,W] × [1, H]. Let

f : P → R where P = {(i, j)|i = 1, ...,W ; j = 1, ..., H}

and let {A1, . . . , Am} × {B1, . . . , Bn} establish a fuzzy par-

tition of [1,W] × [1, H] such that m < W , n < H and

∀k, l ∃i, j; Ak(i)Bl(j) > 0. Then the direct F -transform of

f w. r. t. the chosen partition is a matrix Fmn[f] = (F [f]kl),
k = 1, . . . ,m, l = 1, . . . , n, of F-transform components where

the components are defined for all k = 1, . . . ,m, l = 1, . . . , n
and (i, j) ∈ P as follows

F [f]kl = ckl(f ⊗ Ckl),

where ⊗ is a convolution, Ckl = AkBl, and

ckl =





W
∑

i=1

H
∑

j=1

Ckl(i, j)





−1

.

Let us remark that in the following algorithm, we use

the direct F-transform with respect to the h-uniform fuzzy

partition of [1,W] × [1, H]. The parameter h influences the

number of basic functions in the fuzzy partition and thus

also the size of the matrix Fmn[f] = (F [f]kl) representing

the original function f . Specifically, the larger h the lesser

components F [f]kl and thus, the bigger reduction of the

original function. The algorithm consists of two phases. Both

of them use the same-valued user-defined parameter h. The

first one aims to pattern preparing as:

1) Take pattern fp given on [1,Wp]× [1, Hp].
2) For fp create two fuzzy partitions with respect to the

same parameter h. The first one notated as <1> is

created on [1,Wp] × [1, Hp], the second one <2> is

on [h/2,Wp]× [h/2, Hp].
3) Compute the F-transform components for fp, with re-

spect to both fuzzy partitions, i.e., for fp, we obtain

two representations given by matrices F[fp]<1> and

F[fp]<2>, of the F-transform components.

The second part realizes the pattern matching as follows:

1) Take a particular movie frame (the actual image) and

represent it by a discrete function fD given on [1,WD]×
[1, HD].

2) Create a fuzzy partition of [1,WD]×[1, HD] with respect

to the same parameter h given in the first part.

3) Compute the F-transform components of fD with respect

to the fuzzy partition and obtain the matrix F[fD].
4) Compare the matrices F[fp]<j>, j = 1, 2, with F[fD]

by sliding windows comparison by computing dis-

tances between components Disti(F[fp]<1>,F[fD])

and Dist(F[fp]<2>,F[fD]), and remember the par-

ticular position of fp in fD where Dist =
Dist(F[fp]<1>,F[fD]) + Dist(F[fp]<2>,F[fD]) is

the smallest one.

5) Take the position p = {px, py} of fp in fD.

Such proposed algorithm realizes pattern matching. In order

to realize pattern tracking, we propose following upgrades:

1) Instead of full frame domain [1,WD] × [1, HD], we

consider small sub-area [px,t−1 − ∆, px,t−1 + ∆] ×
[py,t−1 −∆, py,t−1 +∆], where t− 1 denotes previous

location, i.e., we use previous known pattern location

and search in only its ∆-neighborhood. This restriction

improves processing speed because searching space is

reduced and also increases success rate from the same

reason.

2) Let S is a spatial distance between pattern and its

projection in searched sub-area and TU is an threshold.

When S > TU , tracking is stopped. Such situation

means pattern cannot be found.

3) When S > TL, where TL is a threshold and TL < TU

holds, algorithm replaces original pattern fp by image

of its located projection in actual searched sub-area.

This pattern updating helps to handle pattern visual

modification such as rotation.

V. EXPERIMENTS

In this section, we will formulate the exact conditions of

our experiment at first, then design an application and finally,

we will benchmark various tracking cores used inside the

application.

A. Experiment setting and obstacles

In the experiment, we build a glass-side arena with dimen-

sions 1200×800mm. On the floor of the arena, a flat black

cotton fabric is placed. The arena is recorded by a 4k camera,

i.e., it is recorded with a resolution of 3840×2160px in 24

frames per second. Further, we recorded simultaneously 20

pieces of insect at one time, where each one insect has placed

a paper with a label on its back in order to unambiguously

distinguish between them. As the label, we propose one set of

characters {Z, X, B, O, M, H, 4, K, V, +} in two colors: green

and red. Because of the experiment has to be recorded during

a night, the green and red colors are UV-reactive and over the

arena is turned on a UV-light bulb. A part of a recorded movie

is illustrated in Figure 2. Without any deeper exploration, the

problem seems to be trivial to solve - a black background

without any significant noise where highly-visible objects are

moving.

Going into details, several problems appear. Even though a

4k movie is recorded, the insects and therefore the characters

are really small - their size is approx 25×15 pixels so the

possible information which can be extracted from such pattern

is highly limited which may result in decreased success

rate. The extracted patterns with all possible characters are

visualized in Figure 3. Moreover, the labels are placed onto

live insects which are moving in two dimensions, jump and

530

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

Fig. 2. Illustrative screenshot of a recorded movie

also rotate around its axes. From the reason, the same labeled

pattern varies in time in its rotation, size and light reflection

ability. An example is shown in Figure 4 where ten patterns

with the same label ”+” were arbitrarily extracted from one

single movie. It is obvious that so big variety can lead to

decreasing success rate when several insects are very close to

each other and therefore a possible swap of different detected

patterns may appear.

Fig. 3. Extracted objects - patterns from a single movie frame.

The next problem is processing speed. Because of the

experiment design, 27 movies with the length of 600 seconds

per movie were recorded. It results in 7.7·106 pattern positions

to be tracked in 4k movie resolution. Just for illustration, if we

consider general pattern tracking algorithm working in real-

time (e.g., 30fps) for a full HD video, it means it would take

288 hours to process all the movies in our experiment setting

excluding time for movie decoding/coding, handling failures

etc.

The last obstacle is insect’s behavior. Standardly, tracking

algorithms include way, how a trajectory can be estimated

Fig. 4. Various rotations and light reflections of character ”+”.

when an object is lost - it can be done by, e.g., Kalman filter

[16] and its derivatives. In our case, an insect can be lost for a

while because one insect can cross another one by moving over

its back. Unfortunately, Kalman filter etc. cannot be used for

such tracking because an insect does not have a nice, smooth

trajectory but its movement is chaotic. It can change direction

randomly as same as speed - a non-moving insect can jump,

i.e., it can achieve a massive acceleration between captured

frames.

B. Application design

When handling a large number of movies, fast and reliable

tracking core is useless without a user-friendly application

interface. Therefore we implemented such interface using

multi-platform Qt framework7 connected with C++ coding

language. The application GUI is visualized in Figure 5 and

offer following functionalities.

Fig. 5. GUI of the application for insect tracking.

Create project: a user can define project name and select the

movie to be processed. After that, the movie is decoded into

particular frames. Because FFmpeg8 is used for decoding, we

7http://www.qt.io
8https://www.ffmpeg.org/

531

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

can support a huge variety of movie formats and codecs. At

the same time as the movie is decoded, frames thumbnails

are created and saved to hard disk too. This step is time

exhaustive (especially in the case of our 4k movie), but it

is realized only once for the whole lifetime of the project.

After that, the project can be opened using Open project

button in a short time. When the project is loaded, a user

can see the actual frame in the center of the window, and

several actual thumbnails in the bottom. The thumbnails can

be easily browsed using left/right buttons and after the click

to a particular thumbnail, the big image is updated. In the big

central image, a user can select (by a mouse drawing) patterns

to be tracked. The selected patterns are visualized by a unique

color and visualized in magnified form on the right side of

the application window. If a pattern is not selected in a proper

way, a user can click to the delete button and select it again.

The selected patterns can be stored using save button and

also loaded back by load button. When the patterns are

selected, a user can click on process button. With that, tracking

is started, i.e., one-by-one frames are processed, stored into

a hard disc and visualized in the application GUI. A user

can also see actual progress in percents. The tracking process

stops when one of the three following conditions is reached:

1) all patterns are processed; 2) user clicked on stop button;

3) application detects a possible error in tracking. In all the

three cases, a user can click to Show patterns to see couples

consisting of patterns with the same id from the first and the

actual frame. This is necessary for easy comparison if some

patterns have not been swapped. Also, by clicking on Render

movie, a movie where all tracked positions are marked by the

uniques colors is rendered using FFmpeg. When a user thinks

that all fit, he can store positions and sizes of tracked patterns.

Finally, there is button show path to visualize the complete

paths of all patterns in one single image - the illustration of

the output is shown in Figure 2.

C. Benchmark

To create fair conditions for our proposed F-transform (FT)

based algorithm and other benchmarked ones, we use the same

application functionalities as is described in Subsection V-B

for all the algorithms, the only one thing which differs is which

algorithm inside is called for tracking - if FT, KCF, MIL etc.

To test the five state-of-the-art algorithms, we use OpenCV9

framework, where all the algorithms are implemented because,

in this framework, we can be sure they are well coded. To be

convinced, we tested one real-life movie where an object was

set to be tracked and based on that, we can confirm that all

the five algorithms work great.

From the qualitative point of view, we measured two

variables - processing speed and failure rate. The processing

speed is measured as the time needed for determining one

single insect position; as the time needed for processing whole

frame including twenty pieces of insect; and to be complete,

as the estimated time to process all 27 movies. The three

9http://docs.opencv.org/3.1.0/d0/d0a/classcv 1 1Tracker.html

measurements are dependent, we use them just to illustrate

the scale of the problem. The times are measured on MacBook

Air 2013 notebook and include time needed for loading images

from a hard drive and storing them back. The measured times

are shown in Table II. As we supposed, the fastest one is FT

because it works over reduced space and realizes only one

simple strong classifier which is by the principle faster than

one strong classifier consisting of many weak ones. The second

one is KCF - according to the original publication [5], KCF is

able to process up to 100fps when one single pattern is tracked

in a standard-resolution movie. Note, even if insect per second

tracking seems to be quite similar to FT tracking algorithm,

considering all 27 movies the difference is not negligible 121

hours of processing time. For the same reason, the rest of

methods are unacceptable from the processing time point of

view.

TABLE I
PROCESSING SPEED

Algorithm Insects per sec Frames per sec 27 movies [h]

F-transform 8.7 0.43 251
KCF 5.9 0.29 372

Boosting 3.5 0.17 635
Median Flow 3.5 0.17 635

MIL 1.0 0.05 2160
TLD 0.4 0.02 5400

The second measured variable, the failure rate is a percent-

age ratio how often is it necessary to stop the application (or

the application has stopped itself) and manually repair the bad

location. We designed test set which includes 1000 frames

(i.e., we track 20000 positions in total), which were extracted

from one randomly chosen movie and are time-sorted. The

results are shown in Table II, where the best one - FT -

achieved 15× lower failure rate than the runner-up - MIL. But

in the case of MIL tracker, we have to point out there is one

drawback. Even though the failure rate is pretty low, we cannot

speak about precise detection, because the algorithm marks a

location with a certain tolerance which results to oscillating

between frames. According to that, the measured path differs

from the true one. The measured length varies from 7 % to

53 % to be longer than the truth is. Such performance is not

usable for further statistics processing.

TABLE II
ALGORITHM RELIABILITY

Algorithm name Failure rate [%]

F-transform 0.005
MIL 0.075

Median flow 0.085
Boosting > 1

TLD > 1
KCF N/A

The runner-up in processing speed benchmark, KCF tracker

does not work in our experiment - when an insect is moving,

KCF is remaining to marks the same area where the insect

was originally located and it does not follow its trajectory. We

532

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

tested the implementation on another real-life movie, where

we observed it works when a big-enough area is marked

to be tracked. Therefore, we tested not to mark the only

insect, but also its surrounding in order to obtain bigger

area. Unfortunately, such setting is not suitable because the

algorithm fails when another insect came into the same area,

which occurs very often.
In the case of TLD and Boosting, we tested only several

frames - the algorithms failed for some of the twenty insects

in almost all frames so we stopped the processing - it is not

in human abilities to stop the algorithms almost every frame,

fix the error and continue for the 1000 test images.

VI. CONCLUSION

In the paper, we have presented a real solved biologics

problem - visual insect tracking. Because existing tested

applications realizing tracking did not produce useful outputs,

we design own user-friendly application allowing us to select

patterns (insects) and which tracks them frame-by-frame.

To realize the tracking, we developed and described own

tracking core based on F-transform algorithm which serves

as a strong classifier and follows idea ”tracking by matching”.

This approach has been compared with five existing state-of-

the-art algorithms (KCF, MIL, Boosting, TLD, MedianFlow)

with the result that FT based algorithm is the fastest one and

in the same time with the lowest failure rate. A part of a

processed movie has been coded as a movie and uploaded

into youtu.be/PYydVG6gjE0.

ACKNOWLEDGMENT

This research was supported by the project “LQ1602

IT4Innovations excellence in science”.
We would like to thanks our colleague Michal Burda for

his advice about UV light usage.

REFERENCES

[1] R. Kays, M. C. Crofoot, W. Jetz, and M. Wikelski, “Terrestrial animal
tracking as an eye on life and planet,” Science, vol. 348, no. 6240, p.
aaa2478, 2015.

[2] M. Wikelski, R. W. Kays, N. J. Kasdin, K. Thorup, J. A. Smith, and
G. W. Swenson, “Going wild: what a global small-animal tracking
system could do for experimental biologists,” Journal of Experimental

Biology, vol. 210, no. 2, pp. 181–186, 2007.
[3] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan,

and M. Shah, “Visual tracking: An experimental survey,” IEEE transac-

tions on pattern analysis and machine intelligence, vol. 36, no. 7, pp.
1442–1468, 2014.

[4] P. Hurtik and P. Števuliáková, “Pattern matching: overview, benchmark
and comparison with f-transform general matching algorithm,” Soft

Computing, vol. 21, no. 13, pp. 3525–3536, 2017.
[5] M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. Van de Weijer,

“Adaptive color attributes for real-time visual tracking,” in IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), Columbus,

Ohio, USA, June 24-27, 2014. IEEE Computer Society, 2014, pp.
1090–1097.

[6] F. S. Khan, J. Van de Weijer, and M. Vanrell, “Modulating shape
features by color attention for object recognition,” International Journal

of Computer Vision, vol. 98, no. 1, pp. 49–64, 2012.
[7] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,”

IEEE transactions on pattern analysis and machine intelligence, vol. 34,
no. 7, pp. 1409–1422, 2012.

[8] B. Babenko, M.-H. Yang, and S. Belongie, “Visual tracking with online
multiple instance learning,” in Computer Vision and Pattern Recognition,

2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 983–990.
[9] C. Ji and S. Ma, “Combinations of weak classifiers,” in Advances in

Neural Information Processing Systems, 1997, pp. 494–500.
[10] H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking via on-line

boosting.” in Bmvc, vol. 1, no. 5, 2006, p. 6.
[11] H. Grabner and H. Bischof, “On-line boosting and vision,” in Computer

Vision and Pattern Recognition, 2006 IEEE Computer Society Confer-

ence on, vol. 1. Ieee, 2006, pp. 260–267.
[12] Z. Kalal, K. Mikolajczyk, and J. Matas, “Forward-backward error:

Automatic detection of tracking failures,” in Pattern recognition (ICPR),

2010 20th international conference on. IEEE, 2010, pp. 2756–2759.
[13] B. D. Lucas, T. Kanade et al., “An iterative image registration technique

with an application to stereo vision,” IJCAI, vol. 81, p. 674–679, 1981.
[14] P. Hurtik, P. Hodáková, and I. Perfilieva, “Approximate pattern matching

algorithm,” in International Conference on Information Processing and

Management of Uncertainty in Knowledge-Based Systems. Springer,
2016, pp. 577–587.

[15] I. Perfilieva, “Fuzzy transforms: Theory and applications,” Fuzzy sets

and systems, vol. 157, no. 8, pp. 993–1023, 2006.
[16] D.-J. Jwo and S.-H. Wang, “Adaptive fuzzy strong tracking extended

kalman filtering for gps navigation,” IEEE Sensors Journal, vol. 7, no. 5,
pp. 778–789, 2007.

533

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua

youtu.be/PYydVG6gjE0

