Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/49606
Title: Berry Phase appearance in deformed indium antimonide and gallium gntimonide whiskers
Other Titles: Поява Беррі фази у деформованих нитковидних кристалів антимоніду галію
Authors: Дружинін, Анатолій
Островський, Ігор
Ховерко, Юрій
Лях-Кагуй, Наталія
Druzhinin, Anatoly
Ostrovskii, Igor
Khoverko, Yuriy
Liakh-Kaguy, Natalia
Affiliation: Lviv Polytechnic National University
Bibliographic description (Ukraine): Berry Phase appearance in deformed indium antimonide and gallium gntimonide whiskers / Anatoly Druzhinin, Igor Ostrovskii, Yuriy Khoverko, Natalia Liakh-Kaguy // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 9. — No 2. — P. 22–27.
Bibliographic description (International): Berry Phase appearance in deformed indium antimonide and gallium gntimonide whiskers / Anatoly Druzhinin, Igor Ostrovskii, Yuriy Khoverko, Natalia Liakh-Kaguy // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 9. — No 2. — P. 22–27.
Is part of: Computational Problems of Electrical Engineering, 2 (9), 2019
Issue: 2
Volume: 9
Issue Date: 20-Mar-2019
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
Keywords: indium antimonide and gallium antimonide whiskers
magnetoresistance
Shubnikov-de Haas oscillations
deformation
the Berry phase
Number of pages: 6
Page range: 22-27
Start page: 22
End page: 27
Abstract: Вплив деформації на магніторезистивні властивості нитковидних кристалів (віскерсів) з антимоніду індію та антимоніду галію n-типу провідності та із різними домішками поруч із переходом «метал-діелектрик» досліджено у діапазоні температур 4,2–50 K та магнітному полі 0–14 T. Осциляції Шубнікова – Де Гааза в усьому діапазоні індукції магнітного поля показано у деформованих та недеформованих віскерсах. Амплітуда магніторезистивних осциляцій для зразків обох типів зменшується із зростанням температури. Було визначено наявність фази Беррі за низьких температур у віскерсах з антимоніду індію та антимоніду галію, яка демонструє їхній перехід у стан топологічних діелектриків.
The influence of deformation on magnetoresistance features in indium antimonide and gallium antimonide whiskers of n-type conductivity with different doping concentration in the vicinity to the metalinsulator transition (MIT) was investigated in the temperature range 4.2–50 K and the magnetic field 0–14 T. The Shubnikov-de Haas oscillations in the whole range of magnetic field inductions were shown in deformed and undeformed whiskers. The amplitude of the magnetoresistance oscillations for both type of samples decreases in accordance with the increase in temperature. Berry phase existence under deformation influence was also revealed at low temperatures in the indium antimonide and galium antimonide whiskers, that indicates their transition into the state of topological insulators.
URI: https://ena.lpnu.ua/handle/ntb/49606
Copyright owner: © Національний університет “Львівська політехніка”, 2019
URL for reference material: https://doi.org/10.1103/PhysRevB.91.214414
http://dspace.nbuv.gov.ua/handle/123456789/135328
https://doi.org/10.1016/j.mssp.2010.12.012
https://doi.org/10.3390/cryst7030063
https://doi.org/10.1109/TED.2015.2388442
https://doi.org/10.1063/1.2762279
https://doi.org/10.1063/1.4954778
https://doi.org/10.1002/pssc.200460756
https://doi.org/10.1143/JJAP.19.495
https://jnep.sumdu.edu.ua/ru/full_article/1065
https://doi.org/10.1103/
https://doi.org/10.1063/1.5097360
https://doi.org/10.1016/j.materresbull.2015.08.016
https://doi.org/10.1016/
https://doi.org/10.1063/1.4985975
https://doi.org/10.1186/s11671-017-1923-1
https://doi.org/10.1126/science.1242247
https://doi.org/10.1002/pssr.201206408
https://doi.org/10.1080/15421406.2019.1578506
https://doi.org/10.1103/PhysRevB.86.165439
References (Ukraine): 1. A. F. Silva, A. Levine, Z. S. Momtaz, H.Boudinov, and B. E.Sernelius, “Magnetoresistance of doped silicon”, Physical Review B, 91(21), 214414, 2015. https://doi.org/10.1103/PhysRevB.91.214414
2. A. A. Druzhinin, I. I. Maryamova, O. P. Kutrakov, N. S. Liakh-Kaguy, and T.Palewski, “Strain induced effects in p-type silicon whiskers at low temperatures”, Functional materials, 19(3), pp. 325–329, 2012. http://dspace.nbuv.gov.ua/handle/123456789/135328
3. A. A. Druzhinin, I. P. Ostrovskii, Y. M. Khoverko, N. S. Liakh-Kaguj, and I. R. Kogut, “Strain effect on magnetoresistance of SiGe solid solution whiskers at low temperatures”, Materials science in semiconductor processing, 14(1), pp. 18–22, 2011. https://doi.org/10.1016/j.mssp.2010.12.012
4. L. Wang, L. Zhang, L. Yue, D.Liang, X. Chen, Y. Li, end S. Wang, “Novel dilute bismide, epitaxy, physical properties and device application”, Crystals, 7(3), p. 63, 2017. https://doi.org/10.3390/cryst7030063
5. P. Chang, X. Liu, L. Zeng, K. Wei, and G. Du, “Investigation of hole mobility in strained InSb ultrathin body pMOSFETs”, IEEE Transactions on Electron Devices, 62(3), pp. 947–954, 2015. https://doi.org/10.1109/TED.2015.2388442
6. B. R. Bennett, M. G.Ancona, J. B.Boos, and Shanabrook, B. V. (2007). Mobility enhancement in strained p-In Ga Sb quantum wells. Applied Physics Letters, 91(4), 042104. https://doi.org/10.1063/1.2762279
7. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, “Negative magnetoresistance in indium antimonide whiskers doped with tin”, Low Temperature Physics, 42(6), pp. 453–457, 2016. https://doi.org/10.1063/1.4954778
8. S. Ishida, K. Takeda, A. Okamoto, and I. Shibasaki, “Effect of hetero‐interface on weak localization in InSb thin film layers”, Physica status solidi (c), 2(8), pp. 3067–3071, 2005. https://doi.org/10.1002/pssc.200460756
9. K. Imamura, K. Haruna, and I. Ohno, “Carrier Concentration Dependence of Negative Longitudinal Magnetoresistance for n-InSb at 77 K”, Japanese Journal of Applied Physics, 19(3), p. 495, 1980. https://doi.org/10.1143/JJAP.19.495
10. A. V. Kochura, B. A. Aronzon, M.Alam, A. Lashkul, S. F. Marenkin, M. A.Shakhov, and E. Lahderanta, “Magnetoresistance and anomalous hall effect of InSb doped with Mn”, Journal of Nano-and Electronic Physics, (5,no.4 (1)), 04015-1–04015-6, 2013. https://jnep.sumdu.edu.ua/ru/full_article/1065
11. S. Gardelis, J. Androulakis, Z.Viskadourakis, E. L. Papadopoulou, J. Giapintzakis, S. Rai, and S. B. Roy, “Negative giant longitudinal magnetoresistance in Ni Mn Sb∕ In Sb: Interface effect”, Physical Review B,74(21), 214427, 2006. https://doi.org/10.1103/ PhysRevB.74.214427
12. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, “Quantization in magnetoresistance of strained InSb whiskers”, Low Temperature Physics, 45(5), pp. 513–517, 2019. https://doi.org/10.1063/1.5097360
13. A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. LiakhKaguy, I. Khytruk, and K. Rogacki, “Peculiarities of magnetoresistance in InSb whiskers at cryogenic temperatures”, Materials Research Bulletin, 72, pp. 324–330, 2015. https://doi.org/10.1016/j.materresbull.2015.08.016
14. A. Druzhinin, I. Bolshakova, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, “Low temperature magnetoresistance of InSb whiskers”, Materials Science in Semiconductor Processing, no. 40, pp. 550–555, 2015. https://doi.org/10.1016/ j.mssp.2015.07.030
15. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, “Low-temperature magnetoresistance of GaSb whiskers”, Low Temperature Physics, 43(6), pp. 692–698, 2017. https://doi.org/10.1063/1.4985975
16. I. Khytruk, A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. Liakh-Kaguy, and K. Rogacki, “Properties of doped GaSb whiskers at low temperatures”, Nanoscale research letters, 12(1),p. 156, 2017. https://doi.org/10.1186/s11671-017-1923-1
17. H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C.Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, and Y. Tokura, “Detection of Berry’s phase in a bulk Rashba semiconductor”, Science, 342 (6165), pp. 1490-1493, 2013. https://doi.org/10.1126/science.1242247
18. M. Veldhorst, M. Snelder, M. Hoek, C. G. Molenaar, D. P. Leusink, A. A. Golubov, H. Hilgenkamp, and A. Brinkman, “Magnetotransport and induced superconductivity in Bi based three dimensional topological insulators”, Physica status solidi (RRL)– Rapid Research Letters, 7(12), pp. 26-38, 2013. https://doi.org/10.1002/pssr.201206408
19. W. Feng, C. C. Liu, G. B. Liu, J. J. Zhou, and Y. Yao, “First-principles investigations on the berry phase effect in spin–orbit coupling materials”, Computational Materials Science, no. 112, pp. 428–447, 2016. https://doi.org/10.1016/ j.commatsci.2015.09.020
20. A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. LiakhKaguy, and A. Lukyanchenko, (2018). Spin-orbit interaction in InSb core-shell wires. Molecular Crystals and Liquid Crystals, 674(1), pp. 1–10, 2018. https://doi.org/10.1080/15421406.2019.1578506
21. V. R. Kishore, B. Partoens, and F. M. Peeters, “Electronic structure of InAs/GaSb core-shell nanowires”, Physical Review B, 86(16), 165439, 2012. https://doi.org/10.1103/PhysRevB.86.165439
References (International): 1. A. F. Silva, A. Levine, Z. S. Momtaz, H.Boudinov, and B. E.Sernelius, "Magnetoresistance of doped silicon", Physical Review B, 91(21), 214414, 2015. https://doi.org/10.1103/PhysRevB.91.214414
2. A. A. Druzhinin, I. I. Maryamova, O. P. Kutrakov, N. S. Liakh-Kaguy, and T.Palewski, "Strain induced effects in p-type silicon whiskers at low temperatures", Functional materials, 19(3), pp. 325–329, 2012. http://dspace.nbuv.gov.ua/handle/123456789/135328
3. A. A. Druzhinin, I. P. Ostrovskii, Y. M. Khoverko, N. S. Liakh-Kaguj, and I. R. Kogut, "Strain effect on magnetoresistance of SiGe solid solution whiskers at low temperatures", Materials science in semiconductor processing, 14(1), pp. 18–22, 2011. https://doi.org/10.1016/j.mssp.2010.12.012
4. L. Wang, L. Zhang, L. Yue, D.Liang, X. Chen, Y. Li, end S. Wang, "Novel dilute bismide, epitaxy, physical properties and device application", Crystals, 7(3), p. 63, 2017. https://doi.org/10.3390/cryst7030063
5. P. Chang, X. Liu, L. Zeng, K. Wei, and G. Du, "Investigation of hole mobility in strained InSb ultrathin body pMOSFETs", IEEE Transactions on Electron Devices, 62(3), pp. 947–954, 2015. https://doi.org/10.1109/TED.2015.2388442
6. B. R. Bennett, M. G.Ancona, J. B.Boos, and Shanabrook, B. V. (2007). Mobility enhancement in strained p-In Ga Sb quantum wells. Applied Physics Letters, 91(4), 042104. https://doi.org/10.1063/1.2762279
7. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, "Negative magnetoresistance in indium antimonide whiskers doped with tin", Low Temperature Physics, 42(6), pp. 453–457, 2016. https://doi.org/10.1063/1.4954778
8. S. Ishida, K. Takeda, A. Okamoto, and I. Shibasaki, "Effect of hetero‐interface on weak localization in InSb thin film layers", Physica status solidi (c), 2(8), pp. 3067–3071, 2005. https://doi.org/10.1002/pssc.200460756
9. K. Imamura, K. Haruna, and I. Ohno, "Carrier Concentration Dependence of Negative Longitudinal Magnetoresistance for n-InSb at 77 K", Japanese Journal of Applied Physics, 19(3), p. 495, 1980. https://doi.org/10.1143/JJAP.19.495
10. A. V. Kochura, B. A. Aronzon, M.Alam, A. Lashkul, S. F. Marenkin, M. A.Shakhov, and E. Lahderanta, "Magnetoresistance and anomalous hall effect of InSb doped with Mn", Journal of Nano-and Electronic Physics, (5,no.4 (1)), 04015-1–04015-6, 2013. https://jnep.sumdu.edu.ua/ru/full_article/1065
11. S. Gardelis, J. Androulakis, Z.Viskadourakis, E. L. Papadopoulou, J. Giapintzakis, S. Rai, and S. B. Roy, "Negative giant longitudinal magnetoresistance in Ni Mn Sb∕ In Sb: Interface effect", Physical Review B,74(21), 214427, 2006. https://doi.org/10.1103/ PhysRevB.74.214427
12. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, "Quantization in magnetoresistance of strained InSb whiskers", Low Temperature Physics, 45(5), pp. 513–517, 2019. https://doi.org/10.1063/1.5097360
13. A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. LiakhKaguy, I. Khytruk, and K. Rogacki, "Peculiarities of magnetoresistance in InSb whiskers at cryogenic temperatures", Materials Research Bulletin, 72, pp. 324–330, 2015. https://doi.org/10.1016/j.materresbull.2015.08.016
14. A. Druzhinin, I. Bolshakova, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, "Low temperature magnetoresistance of InSb whiskers", Materials Science in Semiconductor Processing, no. 40, pp. 550–555, 2015. https://doi.org/10.1016/ j.mssp.2015.07.030
15. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, "Low-temperature magnetoresistance of GaSb whiskers", Low Temperature Physics, 43(6), pp. 692–698, 2017. https://doi.org/10.1063/1.4985975
16. I. Khytruk, A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. Liakh-Kaguy, and K. Rogacki, "Properties of doped GaSb whiskers at low temperatures", Nanoscale research letters, 12(1),p. 156, 2017. https://doi.org/10.1186/s11671-017-1923-1
17. H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C.Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, and Y. Tokura, "Detection of Berry’s phase in a bulk Rashba semiconductor", Science, 342 (6165), pp. 1490-1493, 2013. https://doi.org/10.1126/science.1242247
18. M. Veldhorst, M. Snelder, M. Hoek, C. G. Molenaar, D. P. Leusink, A. A. Golubov, H. Hilgenkamp, and A. Brinkman, "Magnetotransport and induced superconductivity in Bi based three dimensional topological insulators", Physica status solidi (RRL)– Rapid Research Letters, 7(12), pp. 26-38, 2013. https://doi.org/10.1002/pssr.201206408
19. W. Feng, C. C. Liu, G. B. Liu, J. J. Zhou, and Y. Yao, "First-principles investigations on the berry phase effect in spin–orbit coupling materials", Computational Materials Science, no. 112, pp. 428–447, 2016. https://doi.org/10.1016/ j.commatsci.2015.09.020
20. A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. LiakhKaguy, and A. Lukyanchenko, (2018). Spin-orbit interaction in InSb core-shell wires. Molecular Crystals and Liquid Crystals, 674(1), pp. 1–10, 2018. https://doi.org/10.1080/15421406.2019.1578506
21. V. R. Kishore, B. Partoens, and F. M. Peeters, "Electronic structure of InAs/GaSb core-shell nanowires", Physical Review B, 86(16), 165439, 2012. https://doi.org/10.1103/PhysRevB.86.165439
Content type: Article
Appears in Collections:Computational Problems Of Electrical Engineering. – 2019 – Vol. 9, No. 2

Files in This Item:
File Description SizeFormat 
2019v9n2_Druzhinin_A-Berry_Phase_appearance_22-27.pdf394.73 kBAdobe PDFView/Open
2019v9n2_Druzhinin_A-Berry_Phase_appearance_22-27__COVER.png541.4 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.