DC Field | Value | Language |
dc.contributor.author | Дружинін, Анатолій | |
dc.contributor.author | Островський, Ігор | |
dc.contributor.author | Ховерко, Юрій | |
dc.contributor.author | Лях-Кагуй, Наталія | |
dc.contributor.author | Druzhinin, Anatoly | |
dc.contributor.author | Ostrovskii, Igor | |
dc.contributor.author | Khoverko, Yuriy | |
dc.contributor.author | Liakh-Kaguy, Natalia | |
dc.date.accessioned | 2020-05-08T10:38:46Z | - |
dc.date.available | 2020-05-08T10:38:46Z | - |
dc.date.created | 2019-03-20 | |
dc.date.issued | 2019-03-20 | |
dc.identifier.citation | Berry Phase appearance in deformed indium antimonide and gallium gntimonide whiskers / Anatoly Druzhinin, Igor Ostrovskii, Yuriy Khoverko, Natalia Liakh-Kaguy // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 9. — No 2. — P. 22–27. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/49606 | - |
dc.description.abstract | Вплив деформації на магніторезистивні властивості
нитковидних кристалів (віскерсів) з антимоніду індію та
антимоніду галію n-типу провідності та із різними домішками поруч із переходом «метал-діелектрик» досліджено у
діапазоні температур 4,2–50 K та магнітному полі 0–14 T.
Осциляції Шубнікова – Де Гааза в усьому діапазоні
індукції магнітного поля показано у деформованих та
недеформованих віскерсах. Амплітуда магніторезистивних
осциляцій для зразків обох типів зменшується із
зростанням температури. Було визначено наявність фази
Беррі за низьких температур у віскерсах з антимоніду
індію та антимоніду галію, яка демонструє їхній перехід у
стан топологічних діелектриків. | |
dc.description.abstract | The influence of deformation on magnetoresistance features in indium antimonide and gallium
antimonide whiskers of n-type conductivity with different doping concentration in the vicinity to the metalinsulator transition (MIT) was investigated in the temperature range 4.2–50 K and the magnetic field 0–14 T.
The Shubnikov-de Haas oscillations in the whole range
of magnetic field inductions were shown in deformed
and undeformed whiskers. The amplitude of the
magnetoresistance oscillations for both type of samples
decreases in accordance with the increase in temperature.
Berry phase existence under deformation influence was
also revealed at low temperatures in the indium
antimonide and galium antimonide whiskers, that
indicates their transition into the state of topological insulators. | |
dc.format.extent | 22-27 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Computational Problems of Electrical Engineering, 2 (9), 2019 | |
dc.relation.uri | https://doi.org/10.1103/PhysRevB.91.214414 | |
dc.relation.uri | http://dspace.nbuv.gov.ua/handle/123456789/135328 | |
dc.relation.uri | https://doi.org/10.1016/j.mssp.2010.12.012 | |
dc.relation.uri | https://doi.org/10.3390/cryst7030063 | |
dc.relation.uri | https://doi.org/10.1109/TED.2015.2388442 | |
dc.relation.uri | https://doi.org/10.1063/1.2762279 | |
dc.relation.uri | https://doi.org/10.1063/1.4954778 | |
dc.relation.uri | https://doi.org/10.1002/pssc.200460756 | |
dc.relation.uri | https://doi.org/10.1143/JJAP.19.495 | |
dc.relation.uri | https://jnep.sumdu.edu.ua/ru/full_article/1065 | |
dc.relation.uri | https://doi.org/10.1103/ | |
dc.relation.uri | https://doi.org/10.1063/1.5097360 | |
dc.relation.uri | https://doi.org/10.1016/j.materresbull.2015.08.016 | |
dc.relation.uri | https://doi.org/10.1016/ | |
dc.relation.uri | https://doi.org/10.1063/1.4985975 | |
dc.relation.uri | https://doi.org/10.1186/s11671-017-1923-1 | |
dc.relation.uri | https://doi.org/10.1126/science.1242247 | |
dc.relation.uri | https://doi.org/10.1002/pssr.201206408 | |
dc.relation.uri | https://doi.org/10.1080/15421406.2019.1578506 | |
dc.relation.uri | https://doi.org/10.1103/PhysRevB.86.165439 | |
dc.subject | indium antimonide and gallium antimonide whiskers | |
dc.subject | magnetoresistance | |
dc.subject | Shubnikov-de Haas oscillations | |
dc.subject | deformation | |
dc.subject | the Berry phase | |
dc.title | Berry Phase appearance in deformed indium antimonide and gallium gntimonide whiskers | |
dc.title.alternative | Поява Беррі фази у деформованих нитковидних кристалів антимоніду галію | |
dc.type | Article | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2019 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.format.pages | 6 | |
dc.identifier.citationen | Berry Phase appearance in deformed indium antimonide and gallium gntimonide whiskers / Anatoly Druzhinin, Igor Ostrovskii, Yuriy Khoverko, Natalia Liakh-Kaguy // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 9. — No 2. — P. 22–27. | |
dc.relation.references | 1. A. F. Silva, A. Levine, Z. S. Momtaz, H.Boudinov, and B. E.Sernelius, “Magnetoresistance of doped silicon”, Physical Review B, 91(21), 214414, 2015. https://doi.org/10.1103/PhysRevB.91.214414 | |
dc.relation.references | 2. A. A. Druzhinin, I. I. Maryamova, O. P. Kutrakov, N. S. Liakh-Kaguy, and T.Palewski, “Strain induced effects in p-type silicon whiskers at low temperatures”, Functional materials, 19(3), pp. 325–329, 2012. http://dspace.nbuv.gov.ua/handle/123456789/135328 | |
dc.relation.references | 3. A. A. Druzhinin, I. P. Ostrovskii, Y. M. Khoverko, N. S. Liakh-Kaguj, and I. R. Kogut, “Strain effect on magnetoresistance of SiGe solid solution whiskers at low temperatures”, Materials science in semiconductor processing, 14(1), pp. 18–22, 2011. https://doi.org/10.1016/j.mssp.2010.12.012 | |
dc.relation.references | 4. L. Wang, L. Zhang, L. Yue, D.Liang, X. Chen, Y. Li, end S. Wang, “Novel dilute bismide, epitaxy, physical properties and device application”, Crystals, 7(3), p. 63, 2017. https://doi.org/10.3390/cryst7030063 | |
dc.relation.references | 5. P. Chang, X. Liu, L. Zeng, K. Wei, and G. Du, “Investigation of hole mobility in strained InSb ultrathin body pMOSFETs”, IEEE Transactions on Electron Devices, 62(3), pp. 947–954, 2015. https://doi.org/10.1109/TED.2015.2388442 | |
dc.relation.references | 6. B. R. Bennett, M. G.Ancona, J. B.Boos, and Shanabrook, B. V. (2007). Mobility enhancement in strained p-In Ga Sb quantum wells. Applied Physics Letters, 91(4), 042104. https://doi.org/10.1063/1.2762279 | |
dc.relation.references | 7. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, “Negative magnetoresistance in indium antimonide whiskers doped with tin”, Low Temperature Physics, 42(6), pp. 453–457, 2016. https://doi.org/10.1063/1.4954778 | |
dc.relation.references | 8. S. Ishida, K. Takeda, A. Okamoto, and I. Shibasaki, “Effect of hetero‐interface on weak localization in InSb thin film layers”, Physica status solidi (c), 2(8), pp. 3067–3071, 2005. https://doi.org/10.1002/pssc.200460756 | |
dc.relation.references | 9. K. Imamura, K. Haruna, and I. Ohno, “Carrier Concentration Dependence of Negative Longitudinal Magnetoresistance for n-InSb at 77 K”, Japanese Journal of Applied Physics, 19(3), p. 495, 1980. https://doi.org/10.1143/JJAP.19.495 | |
dc.relation.references | 10. A. V. Kochura, B. A. Aronzon, M.Alam, A. Lashkul, S. F. Marenkin, M. A.Shakhov, and E. Lahderanta, “Magnetoresistance and anomalous hall effect of InSb doped with Mn”, Journal of Nano-and Electronic Physics, (5,no.4 (1)), 04015-1–04015-6, 2013. https://jnep.sumdu.edu.ua/ru/full_article/1065 | |
dc.relation.references | 11. S. Gardelis, J. Androulakis, Z.Viskadourakis, E. L. Papadopoulou, J. Giapintzakis, S. Rai, and S. B. Roy, “Negative giant longitudinal magnetoresistance in Ni Mn Sb∕ In Sb: Interface effect”, Physical Review B,74(21), 214427, 2006. https://doi.org/10.1103/ PhysRevB.74.214427 | |
dc.relation.references | 12. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, “Quantization in magnetoresistance of strained InSb whiskers”, Low Temperature Physics, 45(5), pp. 513–517, 2019. https://doi.org/10.1063/1.5097360 | |
dc.relation.references | 13. A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. LiakhKaguy, I. Khytruk, and K. Rogacki, “Peculiarities of magnetoresistance in InSb whiskers at cryogenic temperatures”, Materials Research Bulletin, 72, pp. 324–330, 2015. https://doi.org/10.1016/j.materresbull.2015.08.016 | |
dc.relation.references | 14. A. Druzhinin, I. Bolshakova, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, “Low temperature magnetoresistance of InSb whiskers”, Materials Science in Semiconductor Processing, no. 40, pp. 550–555, 2015. https://doi.org/10.1016/ j.mssp.2015.07.030 | |
dc.relation.references | 15. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, “Low-temperature magnetoresistance of GaSb whiskers”, Low Temperature Physics, 43(6), pp. 692–698, 2017. https://doi.org/10.1063/1.4985975 | |
dc.relation.references | 16. I. Khytruk, A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. Liakh-Kaguy, and K. Rogacki, “Properties of doped GaSb whiskers at low temperatures”, Nanoscale research letters, 12(1),p. 156, 2017. https://doi.org/10.1186/s11671-017-1923-1 | |
dc.relation.references | 17. H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C.Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, and Y. Tokura, “Detection of Berry’s phase in a bulk Rashba semiconductor”, Science, 342 (6165), pp. 1490-1493, 2013. https://doi.org/10.1126/science.1242247 | |
dc.relation.references | 18. M. Veldhorst, M. Snelder, M. Hoek, C. G. Molenaar, D. P. Leusink, A. A. Golubov, H. Hilgenkamp, and A. Brinkman, “Magnetotransport and induced superconductivity in Bi based three dimensional topological insulators”, Physica status solidi (RRL)– Rapid Research Letters, 7(12), pp. 26-38, 2013. https://doi.org/10.1002/pssr.201206408 | |
dc.relation.references | 19. W. Feng, C. C. Liu, G. B. Liu, J. J. Zhou, and Y. Yao, “First-principles investigations on the berry phase effect in spin–orbit coupling materials”, Computational Materials Science, no. 112, pp. 428–447, 2016. https://doi.org/10.1016/ j.commatsci.2015.09.020 | |
dc.relation.references | 20. A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. LiakhKaguy, and A. Lukyanchenko, (2018). Spin-orbit interaction in InSb core-shell wires. Molecular Crystals and Liquid Crystals, 674(1), pp. 1–10, 2018. https://doi.org/10.1080/15421406.2019.1578506 | |
dc.relation.references | 21. V. R. Kishore, B. Partoens, and F. M. Peeters, “Electronic structure of InAs/GaSb core-shell nanowires”, Physical Review B, 86(16), 165439, 2012. https://doi.org/10.1103/PhysRevB.86.165439 | |
dc.relation.referencesen | 1. A. F. Silva, A. Levine, Z. S. Momtaz, H.Boudinov, and B. E.Sernelius, "Magnetoresistance of doped silicon", Physical Review B, 91(21), 214414, 2015. https://doi.org/10.1103/PhysRevB.91.214414 | |
dc.relation.referencesen | 2. A. A. Druzhinin, I. I. Maryamova, O. P. Kutrakov, N. S. Liakh-Kaguy, and T.Palewski, "Strain induced effects in p-type silicon whiskers at low temperatures", Functional materials, 19(3), pp. 325–329, 2012. http://dspace.nbuv.gov.ua/handle/123456789/135328 | |
dc.relation.referencesen | 3. A. A. Druzhinin, I. P. Ostrovskii, Y. M. Khoverko, N. S. Liakh-Kaguj, and I. R. Kogut, "Strain effect on magnetoresistance of SiGe solid solution whiskers at low temperatures", Materials science in semiconductor processing, 14(1), pp. 18–22, 2011. https://doi.org/10.1016/j.mssp.2010.12.012 | |
dc.relation.referencesen | 4. L. Wang, L. Zhang, L. Yue, D.Liang, X. Chen, Y. Li, end S. Wang, "Novel dilute bismide, epitaxy, physical properties and device application", Crystals, 7(3), p. 63, 2017. https://doi.org/10.3390/cryst7030063 | |
dc.relation.referencesen | 5. P. Chang, X. Liu, L. Zeng, K. Wei, and G. Du, "Investigation of hole mobility in strained InSb ultrathin body pMOSFETs", IEEE Transactions on Electron Devices, 62(3), pp. 947–954, 2015. https://doi.org/10.1109/TED.2015.2388442 | |
dc.relation.referencesen | 6. B. R. Bennett, M. G.Ancona, J. B.Boos, and Shanabrook, B. V. (2007). Mobility enhancement in strained p-In Ga Sb quantum wells. Applied Physics Letters, 91(4), 042104. https://doi.org/10.1063/1.2762279 | |
dc.relation.referencesen | 7. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, "Negative magnetoresistance in indium antimonide whiskers doped with tin", Low Temperature Physics, 42(6), pp. 453–457, 2016. https://doi.org/10.1063/1.4954778 | |
dc.relation.referencesen | 8. S. Ishida, K. Takeda, A. Okamoto, and I. Shibasaki, "Effect of hetero‐interface on weak localization in InSb thin film layers", Physica status solidi (c), 2(8), pp. 3067–3071, 2005. https://doi.org/10.1002/pssc.200460756 | |
dc.relation.referencesen | 9. K. Imamura, K. Haruna, and I. Ohno, "Carrier Concentration Dependence of Negative Longitudinal Magnetoresistance for n-InSb at 77 K", Japanese Journal of Applied Physics, 19(3), p. 495, 1980. https://doi.org/10.1143/JJAP.19.495 | |
dc.relation.referencesen | 10. A. V. Kochura, B. A. Aronzon, M.Alam, A. Lashkul, S. F. Marenkin, M. A.Shakhov, and E. Lahderanta, "Magnetoresistance and anomalous hall effect of InSb doped with Mn", Journal of Nano-and Electronic Physics, (5,no.4 (1)), 04015-1–04015-6, 2013. https://jnep.sumdu.edu.ua/ru/full_article/1065 | |
dc.relation.referencesen | 11. S. Gardelis, J. Androulakis, Z.Viskadourakis, E. L. Papadopoulou, J. Giapintzakis, S. Rai, and S. B. Roy, "Negative giant longitudinal magnetoresistance in Ni Mn Sb∕ In Sb: Interface effect", Physical Review B,74(21), 214427, 2006. https://doi.org/10.1103/ PhysRevB.74.214427 | |
dc.relation.referencesen | 12. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, "Quantization in magnetoresistance of strained InSb whiskers", Low Temperature Physics, 45(5), pp. 513–517, 2019. https://doi.org/10.1063/1.5097360 | |
dc.relation.referencesen | 13. A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. LiakhKaguy, I. Khytruk, and K. Rogacki, "Peculiarities of magnetoresistance in InSb whiskers at cryogenic temperatures", Materials Research Bulletin, 72, pp. 324–330, 2015. https://doi.org/10.1016/j.materresbull.2015.08.016 | |
dc.relation.referencesen | 14. A. Druzhinin, I. Bolshakova, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, "Low temperature magnetoresistance of InSb whiskers", Materials Science in Semiconductor Processing, no. 40, pp. 550–555, 2015. https://doi.org/10.1016/ j.mssp.2015.07.030 | |
dc.relation.referencesen | 15. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, "Low-temperature magnetoresistance of GaSb whiskers", Low Temperature Physics, 43(6), pp. 692–698, 2017. https://doi.org/10.1063/1.4985975 | |
dc.relation.referencesen | 16. I. Khytruk, A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. Liakh-Kaguy, and K. Rogacki, "Properties of doped GaSb whiskers at low temperatures", Nanoscale research letters, 12(1),p. 156, 2017. https://doi.org/10.1186/s11671-017-1923-1 | |
dc.relation.referencesen | 17. H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C.Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, and Y. Tokura, "Detection of Berry’s phase in a bulk Rashba semiconductor", Science, 342 (6165), pp. 1490-1493, 2013. https://doi.org/10.1126/science.1242247 | |
dc.relation.referencesen | 18. M. Veldhorst, M. Snelder, M. Hoek, C. G. Molenaar, D. P. Leusink, A. A. Golubov, H. Hilgenkamp, and A. Brinkman, "Magnetotransport and induced superconductivity in Bi based three dimensional topological insulators", Physica status solidi (RRL)– Rapid Research Letters, 7(12), pp. 26-38, 2013. https://doi.org/10.1002/pssr.201206408 | |
dc.relation.referencesen | 19. W. Feng, C. C. Liu, G. B. Liu, J. J. Zhou, and Y. Yao, "First-principles investigations on the berry phase effect in spin–orbit coupling materials", Computational Materials Science, no. 112, pp. 428–447, 2016. https://doi.org/10.1016/ j.commatsci.2015.09.020 | |
dc.relation.referencesen | 20. A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. LiakhKaguy, and A. Lukyanchenko, (2018). Spin-orbit interaction in InSb core-shell wires. Molecular Crystals and Liquid Crystals, 674(1), pp. 1–10, 2018. https://doi.org/10.1080/15421406.2019.1578506 | |
dc.relation.referencesen | 21. V. R. Kishore, B. Partoens, and F. M. Peeters, "Electronic structure of InAs/GaSb core-shell nanowires", Physical Review B, 86(16), 165439, 2012. https://doi.org/10.1103/PhysRevB.86.165439 | |
dc.citation.volume | 9 | |
dc.citation.issue | 2 | |
dc.citation.spage | 22 | |
dc.citation.epage | 27 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Computational Problems Of Electrical Engineering. – 2019 – Vol. 9, No. 2
|