Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/49606
Full metadata record
DC FieldValueLanguage
dc.contributor.authorДружинін, Анатолій
dc.contributor.authorОстровський, Ігор
dc.contributor.authorХоверко, Юрій
dc.contributor.authorЛях-Кагуй, Наталія
dc.contributor.authorDruzhinin, Anatoly
dc.contributor.authorOstrovskii, Igor
dc.contributor.authorKhoverko, Yuriy
dc.contributor.authorLiakh-Kaguy, Natalia
dc.date.accessioned2020-05-08T10:38:46Z-
dc.date.available2020-05-08T10:38:46Z-
dc.date.created2019-03-20
dc.date.issued2019-03-20
dc.identifier.citationBerry Phase appearance in deformed indium antimonide and gallium gntimonide whiskers / Anatoly Druzhinin, Igor Ostrovskii, Yuriy Khoverko, Natalia Liakh-Kaguy // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 9. — No 2. — P. 22–27.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/49606-
dc.description.abstractВплив деформації на магніторезистивні властивості нитковидних кристалів (віскерсів) з антимоніду індію та антимоніду галію n-типу провідності та із різними домішками поруч із переходом «метал-діелектрик» досліджено у діапазоні температур 4,2–50 K та магнітному полі 0–14 T. Осциляції Шубнікова – Де Гааза в усьому діапазоні індукції магнітного поля показано у деформованих та недеформованих віскерсах. Амплітуда магніторезистивних осциляцій для зразків обох типів зменшується із зростанням температури. Було визначено наявність фази Беррі за низьких температур у віскерсах з антимоніду індію та антимоніду галію, яка демонструє їхній перехід у стан топологічних діелектриків.
dc.description.abstractThe influence of deformation on magnetoresistance features in indium antimonide and gallium antimonide whiskers of n-type conductivity with different doping concentration in the vicinity to the metalinsulator transition (MIT) was investigated in the temperature range 4.2–50 K and the magnetic field 0–14 T. The Shubnikov-de Haas oscillations in the whole range of magnetic field inductions were shown in deformed and undeformed whiskers. The amplitude of the magnetoresistance oscillations for both type of samples decreases in accordance with the increase in temperature. Berry phase existence under deformation influence was also revealed at low temperatures in the indium antimonide and galium antimonide whiskers, that indicates their transition into the state of topological insulators.
dc.format.extent22-27
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofComputational Problems of Electrical Engineering, 2 (9), 2019
dc.relation.urihttps://doi.org/10.1103/PhysRevB.91.214414
dc.relation.urihttp://dspace.nbuv.gov.ua/handle/123456789/135328
dc.relation.urihttps://doi.org/10.1016/j.mssp.2010.12.012
dc.relation.urihttps://doi.org/10.3390/cryst7030063
dc.relation.urihttps://doi.org/10.1109/TED.2015.2388442
dc.relation.urihttps://doi.org/10.1063/1.2762279
dc.relation.urihttps://doi.org/10.1063/1.4954778
dc.relation.urihttps://doi.org/10.1002/pssc.200460756
dc.relation.urihttps://doi.org/10.1143/JJAP.19.495
dc.relation.urihttps://jnep.sumdu.edu.ua/ru/full_article/1065
dc.relation.urihttps://doi.org/10.1103/
dc.relation.urihttps://doi.org/10.1063/1.5097360
dc.relation.urihttps://doi.org/10.1016/j.materresbull.2015.08.016
dc.relation.urihttps://doi.org/10.1016/
dc.relation.urihttps://doi.org/10.1063/1.4985975
dc.relation.urihttps://doi.org/10.1186/s11671-017-1923-1
dc.relation.urihttps://doi.org/10.1126/science.1242247
dc.relation.urihttps://doi.org/10.1002/pssr.201206408
dc.relation.urihttps://doi.org/10.1080/15421406.2019.1578506
dc.relation.urihttps://doi.org/10.1103/PhysRevB.86.165439
dc.subjectindium antimonide and gallium antimonide whiskers
dc.subjectmagnetoresistance
dc.subjectShubnikov-de Haas oscillations
dc.subjectdeformation
dc.subjectthe Berry phase
dc.titleBerry Phase appearance in deformed indium antimonide and gallium gntimonide whiskers
dc.title.alternativeПоява Беррі фази у деформованих нитковидних кристалів антимоніду галію
dc.typeArticle
dc.rights.holder© Національний університет “Львівська політехніка”, 2019
dc.contributor.affiliationLviv Polytechnic National University
dc.format.pages6
dc.identifier.citationenBerry Phase appearance in deformed indium antimonide and gallium gntimonide whiskers / Anatoly Druzhinin, Igor Ostrovskii, Yuriy Khoverko, Natalia Liakh-Kaguy // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 9. — No 2. — P. 22–27.
dc.relation.references1. A. F. Silva, A. Levine, Z. S. Momtaz, H.Boudinov, and B. E.Sernelius, “Magnetoresistance of doped silicon”, Physical Review B, 91(21), 214414, 2015. https://doi.org/10.1103/PhysRevB.91.214414
dc.relation.references2. A. A. Druzhinin, I. I. Maryamova, O. P. Kutrakov, N. S. Liakh-Kaguy, and T.Palewski, “Strain induced effects in p-type silicon whiskers at low temperatures”, Functional materials, 19(3), pp. 325–329, 2012. http://dspace.nbuv.gov.ua/handle/123456789/135328
dc.relation.references3. A. A. Druzhinin, I. P. Ostrovskii, Y. M. Khoverko, N. S. Liakh-Kaguj, and I. R. Kogut, “Strain effect on magnetoresistance of SiGe solid solution whiskers at low temperatures”, Materials science in semiconductor processing, 14(1), pp. 18–22, 2011. https://doi.org/10.1016/j.mssp.2010.12.012
dc.relation.references4. L. Wang, L. Zhang, L. Yue, D.Liang, X. Chen, Y. Li, end S. Wang, “Novel dilute bismide, epitaxy, physical properties and device application”, Crystals, 7(3), p. 63, 2017. https://doi.org/10.3390/cryst7030063
dc.relation.references5. P. Chang, X. Liu, L. Zeng, K. Wei, and G. Du, “Investigation of hole mobility in strained InSb ultrathin body pMOSFETs”, IEEE Transactions on Electron Devices, 62(3), pp. 947–954, 2015. https://doi.org/10.1109/TED.2015.2388442
dc.relation.references6. B. R. Bennett, M. G.Ancona, J. B.Boos, and Shanabrook, B. V. (2007). Mobility enhancement in strained p-In Ga Sb quantum wells. Applied Physics Letters, 91(4), 042104. https://doi.org/10.1063/1.2762279
dc.relation.references7. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, “Negative magnetoresistance in indium antimonide whiskers doped with tin”, Low Temperature Physics, 42(6), pp. 453–457, 2016. https://doi.org/10.1063/1.4954778
dc.relation.references8. S. Ishida, K. Takeda, A. Okamoto, and I. Shibasaki, “Effect of hetero‐interface on weak localization in InSb thin film layers”, Physica status solidi (c), 2(8), pp. 3067–3071, 2005. https://doi.org/10.1002/pssc.200460756
dc.relation.references9. K. Imamura, K. Haruna, and I. Ohno, “Carrier Concentration Dependence of Negative Longitudinal Magnetoresistance for n-InSb at 77 K”, Japanese Journal of Applied Physics, 19(3), p. 495, 1980. https://doi.org/10.1143/JJAP.19.495
dc.relation.references10. A. V. Kochura, B. A. Aronzon, M.Alam, A. Lashkul, S. F. Marenkin, M. A.Shakhov, and E. Lahderanta, “Magnetoresistance and anomalous hall effect of InSb doped with Mn”, Journal of Nano-and Electronic Physics, (5,no.4 (1)), 04015-1–04015-6, 2013. https://jnep.sumdu.edu.ua/ru/full_article/1065
dc.relation.references11. S. Gardelis, J. Androulakis, Z.Viskadourakis, E. L. Papadopoulou, J. Giapintzakis, S. Rai, and S. B. Roy, “Negative giant longitudinal magnetoresistance in Ni Mn Sb∕ In Sb: Interface effect”, Physical Review B,74(21), 214427, 2006. https://doi.org/10.1103/ PhysRevB.74.214427
dc.relation.references12. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, “Quantization in magnetoresistance of strained InSb whiskers”, Low Temperature Physics, 45(5), pp. 513–517, 2019. https://doi.org/10.1063/1.5097360
dc.relation.references13. A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. LiakhKaguy, I. Khytruk, and K. Rogacki, “Peculiarities of magnetoresistance in InSb whiskers at cryogenic temperatures”, Materials Research Bulletin, 72, pp. 324–330, 2015. https://doi.org/10.1016/j.materresbull.2015.08.016
dc.relation.references14. A. Druzhinin, I. Bolshakova, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, “Low temperature magnetoresistance of InSb whiskers”, Materials Science in Semiconductor Processing, no. 40, pp. 550–555, 2015. https://doi.org/10.1016/ j.mssp.2015.07.030
dc.relation.references15. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, “Low-temperature magnetoresistance of GaSb whiskers”, Low Temperature Physics, 43(6), pp. 692–698, 2017. https://doi.org/10.1063/1.4985975
dc.relation.references16. I. Khytruk, A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. Liakh-Kaguy, and K. Rogacki, “Properties of doped GaSb whiskers at low temperatures”, Nanoscale research letters, 12(1),p. 156, 2017. https://doi.org/10.1186/s11671-017-1923-1
dc.relation.references17. H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C.Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, and Y. Tokura, “Detection of Berry’s phase in a bulk Rashba semiconductor”, Science, 342 (6165), pp. 1490-1493, 2013. https://doi.org/10.1126/science.1242247
dc.relation.references18. M. Veldhorst, M. Snelder, M. Hoek, C. G. Molenaar, D. P. Leusink, A. A. Golubov, H. Hilgenkamp, and A. Brinkman, “Magnetotransport and induced superconductivity in Bi based three dimensional topological insulators”, Physica status solidi (RRL)– Rapid Research Letters, 7(12), pp. 26-38, 2013. https://doi.org/10.1002/pssr.201206408
dc.relation.references19. W. Feng, C. C. Liu, G. B. Liu, J. J. Zhou, and Y. Yao, “First-principles investigations on the berry phase effect in spin–orbit coupling materials”, Computational Materials Science, no. 112, pp. 428–447, 2016. https://doi.org/10.1016/ j.commatsci.2015.09.020
dc.relation.references20. A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. LiakhKaguy, and A. Lukyanchenko, (2018). Spin-orbit interaction in InSb core-shell wires. Molecular Crystals and Liquid Crystals, 674(1), pp. 1–10, 2018. https://doi.org/10.1080/15421406.2019.1578506
dc.relation.references21. V. R. Kishore, B. Partoens, and F. M. Peeters, “Electronic structure of InAs/GaSb core-shell nanowires”, Physical Review B, 86(16), 165439, 2012. https://doi.org/10.1103/PhysRevB.86.165439
dc.relation.referencesen1. A. F. Silva, A. Levine, Z. S. Momtaz, H.Boudinov, and B. E.Sernelius, "Magnetoresistance of doped silicon", Physical Review B, 91(21), 214414, 2015. https://doi.org/10.1103/PhysRevB.91.214414
dc.relation.referencesen2. A. A. Druzhinin, I. I. Maryamova, O. P. Kutrakov, N. S. Liakh-Kaguy, and T.Palewski, "Strain induced effects in p-type silicon whiskers at low temperatures", Functional materials, 19(3), pp. 325–329, 2012. http://dspace.nbuv.gov.ua/handle/123456789/135328
dc.relation.referencesen3. A. A. Druzhinin, I. P. Ostrovskii, Y. M. Khoverko, N. S. Liakh-Kaguj, and I. R. Kogut, "Strain effect on magnetoresistance of SiGe solid solution whiskers at low temperatures", Materials science in semiconductor processing, 14(1), pp. 18–22, 2011. https://doi.org/10.1016/j.mssp.2010.12.012
dc.relation.referencesen4. L. Wang, L. Zhang, L. Yue, D.Liang, X. Chen, Y. Li, end S. Wang, "Novel dilute bismide, epitaxy, physical properties and device application", Crystals, 7(3), p. 63, 2017. https://doi.org/10.3390/cryst7030063
dc.relation.referencesen5. P. Chang, X. Liu, L. Zeng, K. Wei, and G. Du, "Investigation of hole mobility in strained InSb ultrathin body pMOSFETs", IEEE Transactions on Electron Devices, 62(3), pp. 947–954, 2015. https://doi.org/10.1109/TED.2015.2388442
dc.relation.referencesen6. B. R. Bennett, M. G.Ancona, J. B.Boos, and Shanabrook, B. V. (2007). Mobility enhancement in strained p-In Ga Sb quantum wells. Applied Physics Letters, 91(4), 042104. https://doi.org/10.1063/1.2762279
dc.relation.referencesen7. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, "Negative magnetoresistance in indium antimonide whiskers doped with tin", Low Temperature Physics, 42(6), pp. 453–457, 2016. https://doi.org/10.1063/1.4954778
dc.relation.referencesen8. S. Ishida, K. Takeda, A. Okamoto, and I. Shibasaki, "Effect of hetero‐interface on weak localization in InSb thin film layers", Physica status solidi (c), 2(8), pp. 3067–3071, 2005. https://doi.org/10.1002/pssc.200460756
dc.relation.referencesen9. K. Imamura, K. Haruna, and I. Ohno, "Carrier Concentration Dependence of Negative Longitudinal Magnetoresistance for n-InSb at 77 K", Japanese Journal of Applied Physics, 19(3), p. 495, 1980. https://doi.org/10.1143/JJAP.19.495
dc.relation.referencesen10. A. V. Kochura, B. A. Aronzon, M.Alam, A. Lashkul, S. F. Marenkin, M. A.Shakhov, and E. Lahderanta, "Magnetoresistance and anomalous hall effect of InSb doped with Mn", Journal of Nano-and Electronic Physics, (5,no.4 (1)), 04015-1–04015-6, 2013. https://jnep.sumdu.edu.ua/ru/full_article/1065
dc.relation.referencesen11. S. Gardelis, J. Androulakis, Z.Viskadourakis, E. L. Papadopoulou, J. Giapintzakis, S. Rai, and S. B. Roy, "Negative giant longitudinal magnetoresistance in Ni Mn Sb∕ In Sb: Interface effect", Physical Review B,74(21), 214427, 2006. https://doi.org/10.1103/ PhysRevB.74.214427
dc.relation.referencesen12. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, "Quantization in magnetoresistance of strained InSb whiskers", Low Temperature Physics, 45(5), pp. 513–517, 2019. https://doi.org/10.1063/1.5097360
dc.relation.referencesen13. A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. LiakhKaguy, I. Khytruk, and K. Rogacki, "Peculiarities of magnetoresistance in InSb whiskers at cryogenic temperatures", Materials Research Bulletin, 72, pp. 324–330, 2015. https://doi.org/10.1016/j.materresbull.2015.08.016
dc.relation.referencesen14. A. Druzhinin, I. Bolshakova, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, "Low temperature magnetoresistance of InSb whiskers", Materials Science in Semiconductor Processing, no. 40, pp. 550–555, 2015. https://doi.org/10.1016/ j.mssp.2015.07.030
dc.relation.referencesen15. A. Druzhinin, I. Ostrovskii, Y. Khoverko, and N. Liakh-Kaguy, "Low-temperature magnetoresistance of GaSb whiskers", Low Temperature Physics, 43(6), pp. 692–698, 2017. https://doi.org/10.1063/1.4985975
dc.relation.referencesen16. I. Khytruk, A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. Liakh-Kaguy, and K. Rogacki, "Properties of doped GaSb whiskers at low temperatures", Nanoscale research letters, 12(1),p. 156, 2017. https://doi.org/10.1186/s11671-017-1923-1
dc.relation.referencesen17. H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C.Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, and Y. Tokura, "Detection of Berry’s phase in a bulk Rashba semiconductor", Science, 342 (6165), pp. 1490-1493, 2013. https://doi.org/10.1126/science.1242247
dc.relation.referencesen18. M. Veldhorst, M. Snelder, M. Hoek, C. G. Molenaar, D. P. Leusink, A. A. Golubov, H. Hilgenkamp, and A. Brinkman, "Magnetotransport and induced superconductivity in Bi based three dimensional topological insulators", Physica status solidi (RRL)– Rapid Research Letters, 7(12), pp. 26-38, 2013. https://doi.org/10.1002/pssr.201206408
dc.relation.referencesen19. W. Feng, C. C. Liu, G. B. Liu, J. J. Zhou, and Y. Yao, "First-principles investigations on the berry phase effect in spin–orbit coupling materials", Computational Materials Science, no. 112, pp. 428–447, 2016. https://doi.org/10.1016/ j.commatsci.2015.09.020
dc.relation.referencesen20. A. Druzhinin, I. Ostrovskii, Y. Khoverko, N. LiakhKaguy, and A. Lukyanchenko, (2018). Spin-orbit interaction in InSb core-shell wires. Molecular Crystals and Liquid Crystals, 674(1), pp. 1–10, 2018. https://doi.org/10.1080/15421406.2019.1578506
dc.relation.referencesen21. V. R. Kishore, B. Partoens, and F. M. Peeters, "Electronic structure of InAs/GaSb core-shell nanowires", Physical Review B, 86(16), 165439, 2012. https://doi.org/10.1103/PhysRevB.86.165439
dc.citation.volume9
dc.citation.issue2
dc.citation.spage22
dc.citation.epage27
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
Appears in Collections:Computational Problems Of Electrical Engineering. – 2019 – Vol. 9, No. 2

Files in This Item:
File Description SizeFormat 
2019v9n2_Druzhinin_A-Berry_Phase_appearance_22-27.pdf394.73 kBAdobe PDFView/Open
2019v9n2_Druzhinin_A-Berry_Phase_appearance_22-27__COVER.png541.4 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.