DC Field | Value | Language |
dc.contributor.author | Марущак, У. Д. | |
dc.contributor.author | Позняк, О. Р. | |
dc.contributor.author | Солтисік, Р. А. | |
dc.contributor.author | Проць, Є. | |
dc.contributor.author | Marushchak, Ulyana | |
dc.contributor.author | Poznyak, Oksana | |
dc.contributor.author | Soltisik, Roman | |
dc.contributor.author | Prots, Evgen | |
dc.date.accessioned | 2020-05-07T09:58:22Z | - |
dc.date.available | 2020-05-07T09:58:22Z | - |
dc.date.created | 2019-03-23 | |
dc.date.issued | 2019-03-23 | |
dc.identifier.citation | Оптимізація параметрів світлопрозорих конструкцій / У. Д. Марущак, О. Р. Позняк, Р. А. Солтисік, Є. Проць // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 1. — No 2. — P. 30–36. | |
dc.identifier.issn | 2707-1057 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/49577 | - |
dc.description.abstract | Проаналізовано вплив конструктивних та теплотехнічних параметрів світлопрозорих
огороджень на споживання енергії в будинку садибного типу з позицій забезпечення необхідного
рівня природного освітлення та мінімізації трансмісійних втрат. Проведено оптимізацію
теплотехнічних параметрів огороджувальних світлопрозорих конструкцій будинку для
забезпечення енергетичних показників у напрямку створення енергоефективного будинку за
параметрами опору теплопередачі та раціональної площі. Показано, що трансмісійні втрати
можуть змінюватися в межах 1000–3800 кВт. год/рік за варіювання вибраних параметрів вікон.
Здійснено перевірку вибраної моделі світлопрозорих конструкцій на відповідність вимогам
теплової надійності. На основі аналізу енергетично-екологічних показників будинку методом
математичного моделювання запропоновано систему оцінювання впливу будівельних об’єктів на довкілля. | |
dc.description.abstract | The influence of structural and thermal parameters of window structures on energy
consumption in a house of a residential type is analyzed in this article from the standpoint of providing
the required level of natural lighting and minimizing of transmission losses. It was shown, that modern
buildings are characterized by a much larger proportion of the area of window structures, which
requires a special analysis of the effect of translucent enclosures on the energy performance of
buildings. The window structures should provide harmonious natural lighting of the rooms, while
protecting them from external noise, temperature fluctuations, intense solar radiation and other
negative factors. The classification of window blocks by the parameter of the thermal resistance was
presented. Window structures with different levels of thermal resistance parameter in accordance to
thermal reliability condition (τimin > tmin) were calculated. It was established that the window structures
of class D1 (thermal resistance is 0.39 m2K/W) and above are characterized by an interior surface
temperature higher than 6 °C, which meet the standard requirements. The thermal parameters of
window structures have been optimized to provide energy performance in the direction of creating an
energy-efficient building. The parameters of optimization such as thermal resistance of window
structures (X1 = 0.39; 0.75; 1.11 m2.
·K/W) and geometric parameter corresponding to the ratio of the
area of window to the floor area (X2 = 1:6, 1:7 1:8) were chosen. For a residential house with a
minimum allowable area of window structures in terms of natural lighting and maximum thermal
resistance, the minimum level of heat loss is reached 1026.40 kW·h/year, and CO2 emissions –
248 kg/year, heat losses and greenhouse gas emissions decrease by 3.7 times compared to the
calculation model. It was established that the smallest heat losses occur through energy efficient
windows (thermal resistance is 1.11 m2
·K/W) with the ratio of the area of window structures to the
floor area of the room, which equal 1:8 | |
dc.format.extent | 30-36 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Theory and Building Practice, 2 (1), 2019 | |
dc.subject | світлопрозора конструкція | |
dc.subject | тепловтрати | |
dc.subject | опір теплопередачі | |
dc.subject | енергоефективність | |
dc.subject | heat loss | |
dc.subject | thermal resistance | |
dc.subject | energy efficiency | |
dc.title | Оптимізація параметрів світлопрозорих конструкцій | |
dc.title.alternative | Optimization of parameters of illuminated structures | |
dc.type | Article | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2019 | |
dc.rights.holder | © Марущак У. Д., Позняк О. Р., Солтисік Р. А., Проць Є., 2019 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.format.pages | 7 | |
dc.identifier.citationen | Optimization of parameters of illuminated structures / Ulyana Marushchak, Oksana Poznyak, Roman Soltisik, Evgen Prots // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 1. — No 2. — P. 30–36. | |
dc.relation.references | Fareniuk, G. G., & Tyshkovets, A. V. (2017). Global trends in energy efficiency of buildings. Science and | |
dc.relation.references | construction, 4, 4–10 [in Ukranian]. | |
dc.relation.references | Pidgorny, O. L., Shepetova, I. M., Sergeychuk, A. V., Zaytsev, O. M., & Protsyuk, V. P. (2006). Windows of | |
dc.relation.references | buildings. Kyiv : KNUBA [in Ukranian]. | |
dc.relation.references | Kirankumar, G., Saboor, S., & Ashok Babu, T. P. (2016). Simulation of various wall and window glass | |
dc.relation.references | material buildings for energy efficient building design. Key Engineering Materials, 692, 9–16. | |
dc.relation.references | Yalçın Yaşar, & Sibel Maçka Kalfa. (2012). The effects of window alternatives on energy efficiency and | |
dc.relation.references | building economy in high-rise residential buildings in moderate to humid climates. Energy Conversion and | |
dc.relation.references | Management, 64, 170–81. | |
dc.relation.references | Vanhoutteghem, L., Skarning, G. C. J., Hviid, C. A., & Svendsen, S. (2015). Impact of façade window | |
dc.relation.references | design on energy, daylighting and thermal comfort in nearly zero-energy houses. Energy and Buildings, 102, 149–156. | |
dc.relation.references | Urbikain, M. K., & Sala, J. M. (2009). Analysis of different models to estimate energy savings related to | |
dc.relation.references | windows in residential buildings. Energy and Buildings, 41, 687–695. | |
dc.relation.references | Fareniuk, E. G., & Kaliukh, Y. I. (2014). For the analysis of computational methods for determining the | |
dc.relation.references | thermal characteristics of window structures. Architecture and pages in Azerbaijan, 3, 18–24. | |
dc.relation.references | Sanytsky, M. A., Marushchak, U. D., Secret, R., & Wojcikiewiez, M. (2014). Energy and economic | |
dc.relation.references | indicators of individual houses. Building structures, 80, 176–181 [in Ukranian]. | |
dc.relation.references | Sanytsky, M., Sekret, R., & Wojcikiewiez, M. (2012). Energetic and ecological analysis of energy-saving | |
dc.relation.references | and passive houses. SSP-Journal of Civil Engineering, 7. 1, 71–78. | |
dc.relation.references | Sanytsky, M. A., Kotiv, M. V., & Marushchak, U. D. (2014). Mathematical modeling in research of energy | |
dc.relation.references | efficiency of building objects. Energy efficiency in construction and architecture, 6, 254–259 [in Ukranian]. | |
dc.relation.referencesen | Fareniuk, G. G., & Tyshkovets, A. V. (2017). Global trends in energy efficiency of buildings. Science and | |
dc.relation.referencesen | construction, 4, 4–10 [in Ukranian]. | |
dc.relation.referencesen | Pidgorny, O. L., Shepetova, I. M., Sergeychuk, A. V., Zaytsev, O. M., & Protsyuk, V. P. (2006). Windows of | |
dc.relation.referencesen | buildings. Kyiv : KNUBA [in Ukranian]. | |
dc.relation.referencesen | Kirankumar, G., Saboor, S., & Ashok Babu, T. P. (2016). Simulation of various wall and window glass | |
dc.relation.referencesen | material buildings for energy efficient building design. Key Engineering Materials, 692, 9–16. | |
dc.relation.referencesen | Yalçın Yaşar, & Sibel Maçka Kalfa. (2012). The effects of window alternatives on energy efficiency and | |
dc.relation.referencesen | building economy in high-rise residential buildings in moderate to humid climates. Energy Conversion and | |
dc.relation.referencesen | Management, 64, 170–81. | |
dc.relation.referencesen | Vanhoutteghem, L., Skarning, G. C. J., Hviid, C. A., & Svendsen, S. (2015). Impact of façade window | |
dc.relation.referencesen | design on energy, daylighting and thermal comfort in nearly zero-energy houses. Energy and Buildings, 102, 149–156. | |
dc.relation.referencesen | Urbikain, M. K., & Sala, J. M. (2009). Analysis of different models to estimate energy savings related to | |
dc.relation.referencesen | windows in residential buildings. Energy and Buildings, 41, 687–695. | |
dc.relation.referencesen | Fareniuk, E. G., & Kaliukh, Y. I. (2014). For the analysis of computational methods for determining the | |
dc.relation.referencesen | thermal characteristics of window structures. Architecture and pages in Azerbaijan, 3, 18–24. | |
dc.relation.referencesen | Sanytsky, M. A., Marushchak, U. D., Secret, R., & Wojcikiewiez, M. (2014). Energy and economic | |
dc.relation.referencesen | indicators of individual houses. Building structures, 80, 176–181 [in Ukranian]. | |
dc.relation.referencesen | Sanytsky, M., Sekret, R., & Wojcikiewiez, M. (2012). Energetic and ecological analysis of energy-saving | |
dc.relation.referencesen | and passive houses. SSP-Journal of Civil Engineering, 7. 1, 71–78. | |
dc.relation.referencesen | Sanytsky, M. A., Kotiv, M. V., & Marushchak, U. D. (2014). Mathematical modeling in research of energy | |
dc.relation.referencesen | efficiency of building objects. Energy efficiency in construction and architecture, 6, 254–259 [in Ukranian]. | |
dc.citation.volume | 1 | |
dc.citation.issue | 2 | |
dc.citation.spage | 30 | |
dc.citation.epage | 36 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Theory and Building Practice. – 2019. – Vol. 1, No. 2
|