Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46914
Title: Isfet sensors for biomedical applications
Other Titles: Сенсори на основі іоноселективних польових транзисторів для біохімічного застосування
Authors: Кутова, О. Ю.
Kutova, O.
Affiliation: Національний технічний університет України “Київський політехнічний інститут імені Ігоря Сікорського”
National Technical University of Ukraine “Igor Sikorsky Kiev Polytechnic Institute
Bibliographic description (Ukraine): Kutova O. Isfet sensors for biomedical applications / O. Kutova // Вісник Національного університету “Львівська політехніка”. Серія: Радіоелектроніка та телекомунікації. — Львів : Видавництво Львівської політехніки, 2018. — № 909. — С. 51–61.
Bibliographic description (International): Kutova O. Isfet sensors for biomedical applications / O. Kutova // Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Serie: Radioelektronika ta telekomunikatsii. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2018. — No 909. — P. 51–61.
Is part of: Вісник Національного університету “Львівська політехніка”. Серія: Радіоелектроніка та телекомунікації, 909, 2018
Journal/Collection: Вісник Національного університету “Львівська політехніка”. Серія: Радіоелектроніка та телекомунікації
Issue: 909
Issue Date: 18-Feb-2018
Publisher: Видавництво Львівської політехніки
Place of the edition/event: Львів
Lviv
UDC: 621.391
Keywords: антиген
антитіло
біосенсор
біомолекули
ДНК
іоноселективний польовий транзистор
C-реактивний білок
фермент
antigen
antibody
biosensor
biomolecules
C-reactive protein
DNA
ionselective field-effect transistor
enzyme
Number of pages: 11
Page range: 51-61
Start page: 51
End page: 61
Abstract: Розглянуто важливість розроблення та виготовлення біосенсорів для біохімічного застосування. Наведено основні досягнення щодо використання польових транзисторів як біосенсорів для детектування різних біомолекулярних сполук. Узагальнено основні переваги використання таких сенсорів останніми роками, перспективи їх використання. Наведено приклади застосування ІСПТ кількісного аналізу різних біомолекул, таких як ДНК, білки, ферменти та клітини, та запропоновано нове застосування ІСПТ – сенсора для С-реактивного білка.
The importance of biosensors developing and manufacturing for biochemical applications was considered. The main achievements concerning the use of field transistors as biosensors for the detection of various biomolecular compounds were presented. The main advantages of using such sensors in recent years, prospects of their use were summarized. Examples of the use of ISFET for reliable and sensitive analysis of various biomolecules such as DNA, proteins, enzymes, and cells were presented, and a new application of the ISFETsensor of C-reactive protein was proposed.
URI: https://ena.lpnu.ua/handle/ntb/46914
Copyright owner: © Національний університет “Львівська політехніка”, 2018
© Кутова О. Ю., 2018
References (Ukraine): 1. Favetta M., Valletta A., Fortunato G., Castagna M.-E., Conoci S., Sciuto E.-L., Cosentino T., Sinatra F., Libertino S., Developmentof Si-based electrical biosensors: Simulations and first experimental results. Sensing and Bio-Sensing Research – 2015, 6, 72–78.
2. Besselink G. A. L., Bergveld, P., ISFET affinity sensor. In Affinity Biosensors: Techniques and Protocols (Rogers, K. R. and Mulchandani, A., eds), Springer Humana Press, Totowa – 1998, 173–185.
3. Poghossian A., Ingebrandt S., Abouzar M. H., Schoning M. J. Label-free detection of charged macromolecules by using a field-effect-based sensor platform: Experiments and possible mechanisms of signal generation / Appl. Phys. A. – 2007. – Vol. 87, No. 3, 517–524.
4. Bergveld P., Development of an ion-sensitive solid-state device for neurophysiological measurements, IEEE Trans. Biomed. Eng. 1970, 17, 70–71.
5. Bergveld, P. Thirty Years of ISFETOLOGY – What Happened in the Past 30 Years and What May Happenin the Next 30 Years. Sens. Actuat. B-Chem. – 2003. 88, 1–20.
6. Jimenez-JorqueraС., Orozco J. And Baldi A., ISFET Based Microsensors for Environmental Monitoring, Sensors, 2010, Vol. 10, 61–83.
7. Dhawan G., Sumana G., Malhotra B. D., Recent development in biosensors // Biochemical Engineering Journal.– 2009. – Vol. 44, 42 – 52.
8. C.-E. Lue, T.-C. Yu, C.-M. Yang, D. G. Pijanowska, and C.-S. Lai, “Optimization of urea-EnFET basedon Ta2O5 layer with post annealing,” Sensors, Vol. 11, 2011, 4562–4571.
9. C.-S. Lee, S. K. Kim, and M. Kim, “Ion-sensitive field-effect transistor for biological sensing,” Sensors. – 2009. – Vol. 9, No. 9, 7111–7131.
10. Zhuxin Dong, Uchechukwu C. Wejinyaa, Imad H. Elhajj, Fabrication and testing of ISFET based pH sensors for microliter target solutions, Sensorsand Actuators A: Physical, 2013, 194, 181–187.
11. Nang Mo Hom, Chamras Promptmas, and Kesara Wat-Aksorn, Detection of DNA Hybridization Using Protein A Modified Ion Sensitive Field Effect Transistor, 48, 2015, 1128–1138.
12. Poghossian, A., Ingebrandt, S., Offenhäusser, A., Schöning, M. J., Field-effect devices for detecting cellular signals. Semin. Cell Dev. Biol. 2009, 20, 41–48.
13. Marchenko S. V., Nazarenko O. A., Kukla O. L., Pavluchenko O. S., Krasjuk E. K., Soldatkin O. P., Development of creatinine-sensitive biosensor for medical application // Sensor electronics and microsystem technologies. 2009. – No. 4, 55–62. (ukr.).
14. Schöning M., Poghossian., A., BioFEDs (Field-Effect devices): State-of-the-art and new directions. Electro analysis, 2006, 18, 1893–1900.
15. Ohtake T., Hamai C., Uno T., Tabata H., Kawai T., Immobilization of Probe DNA on Ta2O5 Thin Film and Detection of Hybridized Helix DNA using ISFET., Appl. Phys. 2004, 43, 1137–1139.
16. Kao C. H., Chen H., Kuo L. T., Wang J. C., Chen Y. T., Chu Y. C., Chen C. Y., Lai C. S., Chang S. W., Chang C. W., Multi-analyte biosensors on a CF4 plasma treated Nb2O5-based membrane with an extended gate field effect transistor structure, Sensor Actuators, B Chem, 2014, 194, 419–426.
17. Goncalves D., Prazeres D., Chu V., Conde J., Detection of DNA and proteins using amorphous siliconion-sensitive thin-film field effect transistors. Biosens. Bioelectron., 2008, 24, 545–551.
18. Song K., Nakamura Y., Sasaki Y., Degawa M., Yang J., Kawarada H., pH-sensitive diamond field-effecttransistors (FETs) with directly aminated channel surface., Anal. Chim. Acta, 2006, 573, 3–8.
19. Ingebrandt S., Bioelectronics: sensing beyond the limit. Nat. Nanotechnol., 2005, 10, 734–735.
20. C.-E. Lue, T.-C. Yu, C.-M. Yang, D. G. Pijanowska, and C.-S. Lai, “Optimization of urea-EnFET based on Ta2O5 layer with post annealing,” Sensors, vol. 11, pp. 4562–4571, 2011.
21. Солдаткін О. О., Приліпко В. О., Куйбіда М. А., Хоменко І. І., Солдаткін О. П., Дзядевич C. В. Розробка нового біосенсора для визначення аргініну в фармацевтичних препаратах, Cенсорна електроніка та мікросистемні технології Том 14, No. 2 (2017).
22. Zayats M., Huang Y., GillR., Ma C., Willner, I. Label-free and reagentless aptamer-based sensors for small molecules. J. Am. Chem. Soc. 2006, 128, 13666–13667.
23. Yuqing M., Jianguo G., Jianrong C., Ion-sensitive field effect transducer-based biosensors. Biotechnol. Adv., 2003, 21, 527–534.
24. Besselink G., Schasfoort R., Bergveld P., Modification of ISFETs with a monolayer of latex beads for specific detection of proteins, Biosens. Bioelectron., 2003, 18, 1109–1114.
25. Qu, L., Xia S., Bian, C., Sun J., Han J., A micro-potentiometric hemoglobin immunosensor based on electropolymerized polypyrrole–gold nanoparticles composite., Biosens. Bioelectron., 2009, 24, 3419–3424.
26. Marrakchi M., Dzyadevych S., Biloivan O., Martelet C., Temple P., Jaffrezic-Renault N., Development of trypsin biosensor based on ionsensitive field-effect transistors for proteins determination, Mater. Sci. Eng., C 2006, 26, 369–373.
27. Biloivan O., Dzyadevych S., Boubriak O., Soldatkin A., El’skaya A., Development of Enzyme Biosensor Based on ISFETs for Quantitative Analysis of Serine Proteinases., Electroanalysis, 2004, 16, 1883–1889.
28. Vijayalakshmi A., Tarunashree Y., Baruwati B., Manorama S., Narayana B., Johnson R., Rao N., Enzyme field effect transistor (ENFET) for estimation of triglycerides using magnetic nanoparticles., Biosens. Bioelectron., 2008, 23, 1708–1714.
29. Rebriiev A., Starodub N., Enzymatic Biosensor Based on the ISFET and Photopolymeric Membrane for the Determinaion of Urea, Electroanalysis, 2004, 16, 1891–1895.
30. Lee C.-S., Kim S.-K., Kim M., Ion-Sensitive Field-Effect Transistor for Biological Sensing, ISSN 1424-8220, Sensors, 2009, 9, 7111–7131.
31. Migita S., Ozasa K., Tanaka T., Haruyama T., Enzyme-based field-effect transistor for adenosine triphosphate (ATP) sensing, Analyt. Sci. 2007, 23, 45–48.
32. Nazarenko O. A., Marchenko S. V., Arkhipova V. M., Soldakin O. P., Pavlyuchenko O. S., Kukla O. L., Patent of Ukraine for Utility Model UA 56857 IPC G01N 27/414, 33/49, application July 28, 2010, published Jan 25, 2011, Bul. No. 2 (ukr).
33. Volotovsky V., Soldatkin A., Shul’ga A., Rossokhaty V., Strikha V., El’skaya A., Glucose-sensitive ionsensitive field-effect transistor-based biosensor with additional positively charged membrane. Dynamic range extension and reduction of buffer concentration influence on the sensor response, Anal. Chim., Acta, 1996, 322, 77–81.
34. Risveden K., Ponten J., Calander N., Willander M., Danielsson, B., The region ion sensitive field effect transistor, a novel bioelectronic nanosensor, Biosens. Bioelectron. 2007, 22, 3105–3112.
35. Min-Ho Lee, Suk Won Jung, Wookyeong Seong, Sangdae Lee, Gyeongshik Kim, “Silicon nanowires for high-sensitivity CRP detection”, IEEE, Sensors, 2010, p. 415–418 .
36. Meili Dong, Jiandong Wu, Zimin Ma, HagitPeretz-Soroka, Michael Zhang, Paul Komenda, Navdeep Tangri, Yong Liu, Claudio Rigatto, and Francis Lin Rapidand, Low-Cost CRP Measurement by Integrating a Paper-Based Microfluidic Immunoassay with Smartphone (CRP-Chip), Sensors (Basel). 2017 Apr; 17(4): 684.
37. Min-Ho Lee, Kuk-Nyung Lee, Suk-Won Jung, Won-Hyo Kim, Kyu-Sik Shin, Woo-Kyeong Seong, International Journal of Nanomedicine 2008:3(1) 117–124.
References (International): 1. Favetta M., Valletta A., Fortunato G., Castagna M.-E., Conoci S., Sciuto E.-L., Cosentino T., Sinatra F., Libertino S., Developmentof Si-based electrical biosensors: Simulations and first experimental results. Sensing and Bio-Sensing Research – 2015, 6, 72–78.
2. Besselink G. A. L., Bergveld, P., ISFET affinity sensor. In Affinity Biosensors: Techniques and Protocols (Rogers, K. R. and Mulchandani, A., eds), Springer Humana Press, Totowa – 1998, 173–185.
3. Poghossian A., Ingebrandt S., Abouzar M. H., Schoning M. J. Label-free detection of charged macromolecules by using a field-effect-based sensor platform: Experiments and possible mechanisms of signal generation, Appl. Phys. A, 2007, Vol. 87, No. 3, 517–524.
4. Bergveld P., Development of an ion-sensitive solid-state device for neurophysiological measurements, IEEE Trans. Biomed. Eng. 1970, 17, 70–71.
5. Bergveld, P. Thirty Years of ISFETOLOGY – What Happened in the Past 30 Years and What May Happenin the Next 30 Years. Sens. Actuat. B-Chem, 2003. 88, 1–20.
6. Jimenez-JorqueraS., Orozco J. And Baldi A., ISFET Based Microsensors for Environmental Monitoring, Sensors, 2010, Vol. 10, 61–83.
7. Dhawan G., Sumana G., Malhotra B. D., Recent development in biosensors, Biochemical Engineering Journal, 2009, Vol. 44, 42 – 52.
8. C.-E. Lue, T.-C. Yu, C.-M. Yang, D. G. Pijanowska, and C.-S. Lai, "Optimization of urea-EnFET basedon Ta2O5 layer with post annealing," Sensors, Vol. 11, 2011, 4562–4571.
9. C.-S. Lee, S. K. Kim, and M. Kim, "Ion-sensitive field-effect transistor for biological sensing," Sensors, 2009, Vol. 9, No. 9, 7111–7131.
10. Zhuxin Dong, Uchechukwu C. Wejinyaa, Imad H. Elhajj, Fabrication and testing of ISFET based pH sensors for microliter target solutions, Sensorsand Actuators A: Physical, 2013, 194, 181–187.
11. Nang Mo Hom, Chamras Promptmas, and Kesara Wat-Aksorn, Detection of DNA Hybridization Using Protein A Modified Ion Sensitive Field Effect Transistor, 48, 2015, 1128–1138.
12. Poghossian, A., Ingebrandt, S., Offenhäusser, A., Schöning, M. J., Field-effect devices for detecting cellular signals. Semin. Cell Dev. Biol. 2009, 20, 41–48.
13. Marchenko S. V., Nazarenko O. A., Kukla O. L., Pavluchenko O. S., Krasjuk E. K., Soldatkin O. P., Development of creatinine-sensitive biosensor for medical application, Sensor electronics and microsystem technologies. 2009, No. 4, 55–62. (ukr.).
14. Schöning M., Poghossian., A., BioFEDs (Field-Effect devices): State-of-the-art and new directions. Electro analysis, 2006, 18, 1893–1900.
15. Ohtake T., Hamai C., Uno T., Tabata H., Kawai T., Immobilization of Probe DNA on Ta2O5 Thin Film and Detection of Hybridized Helix DNA using ISFET., Appl. Phys. 2004, 43, 1137–1139.
16. Kao C. H., Chen H., Kuo L. T., Wang J. C., Chen Y. T., Chu Y. C., Chen C. Y., Lai C. S., Chang S. W., Chang C. W., Multi-analyte biosensors on a CF4 plasma treated Nb2O5-based membrane with an extended gate field effect transistor structure, Sensor Actuators, B Chem, 2014, 194, 419–426.
17. Goncalves D., Prazeres D., Chu V., Conde J., Detection of DNA and proteins using amorphous siliconion-sensitive thin-film field effect transistors. Biosens. Bioelectron., 2008, 24, 545–551.
18. Song K., Nakamura Y., Sasaki Y., Degawa M., Yang J., Kawarada H., pH-sensitive diamond field-effecttransistors (FETs) with directly aminated channel surface., Anal. Chim. Acta, 2006, 573, 3–8.
19. Ingebrandt S., Bioelectronics: sensing beyond the limit. Nat. Nanotechnol., 2005, 10, 734–735.
20. C.-E. Lue, T.-C. Yu, C.-M. Yang, D. G. Pijanowska, and C.-S. Lai, "Optimization of urea-EnFET based on Ta2O5 layer with post annealing," Sensors, vol. 11, pp. 4562–4571, 2011.
21. Soldatkin O. O., Prylipko V. O., Kuibida M. A., Khomenko I. I., Soldatkin O. P., Dziadevych C. V. Rozrobka novoho biosensora dlia vyznachennia arhininu v farmatsevtychnykh preparatakh, Censorna elektronika ta mikrosystemni tekhnolohii V. 14, No. 2 (2017).
22. Zayats M., Huang Y., GillR., Ma C., Willner, I. Label-free and reagentless aptamer-based sensors for small molecules. J. Am. Chem. Soc. 2006, 128, 13666–13667.
23. Yuqing M., Jianguo G., Jianrong C., Ion-sensitive field effect transducer-based biosensors. Biotechnol. Adv., 2003, 21, 527–534.
24. Besselink G., Schasfoort R., Bergveld P., Modification of ISFETs with a monolayer of latex beads for specific detection of proteins, Biosens. Bioelectron., 2003, 18, 1109–1114.
25. Qu, L., Xia S., Bian, C., Sun J., Han J., A micro-potentiometric hemoglobin immunosensor based on electropolymerized polypyrrole–gold nanoparticles composite., Biosens. Bioelectron., 2009, 24, 3419–3424.
26. Marrakchi M., Dzyadevych S., Biloivan O., Martelet C., Temple P., Jaffrezic-Renault N., Development of trypsin biosensor based on ionsensitive field-effect transistors for proteins determination, Mater. Sci. Eng., P. 2006, 26, 369–373.
27. Biloivan O., Dzyadevych S., Boubriak O., Soldatkin A., El’skaya A., Development of Enzyme Biosensor Based on ISFETs for Quantitative Analysis of Serine Proteinases., Electroanalysis, 2004, 16, 1883–1889.
28. Vijayalakshmi A., Tarunashree Y., Baruwati B., Manorama S., Narayana B., Johnson R., Rao N., Enzyme field effect transistor (ENFET) for estimation of triglycerides using magnetic nanoparticles., Biosens. Bioelectron., 2008, 23, 1708–1714.
29. Rebriiev A., Starodub N., Enzymatic Biosensor Based on the ISFET and Photopolymeric Membrane for the Determinaion of Urea, Electroanalysis, 2004, 16, 1891–1895.
30. Lee C.-S., Kim S.-K., Kim M., Ion-Sensitive Field-Effect Transistor for Biological Sensing, ISSN 1424-8220, Sensors, 2009, 9, 7111–7131.
31. Migita S., Ozasa K., Tanaka T., Haruyama T., Enzyme-based field-effect transistor for adenosine triphosphate (ATP) sensing, Analyt. Sci. 2007, 23, 45–48.
32. Nazarenko O. A., Marchenko S. V., Arkhipova V. M., Soldakin O. P., Pavlyuchenko O. S., Kukla O. L., Patent of Ukraine for Utility Model UA 56857 IPC G01N 27/414, 33/49, application July 28, 2010, published Jan 25, 2011, Bul. No. 2 (ukr).
33. Volotovsky V., Soldatkin A., Shul’ga A., Rossokhaty V., Strikha V., El’skaya A., Glucose-sensitive ionsensitive field-effect transistor-based biosensor with additional positively charged membrane. Dynamic range extension and reduction of buffer concentration influence on the sensor response, Anal. Chim., Acta, 1996, 322, 77–81.
34. Risveden K., Ponten J., Calander N., Willander M., Danielsson, B., The region ion sensitive field effect transistor, a novel bioelectronic nanosensor, Biosens. Bioelectron. 2007, 22, 3105–3112.
35. Min-Ho Lee, Suk Won Jung, Wookyeong Seong, Sangdae Lee, Gyeongshik Kim, "Silicon nanowires for high-sensitivity CRP detection", IEEE, Sensors, 2010, p. 415–418 .
36. Meili Dong, Jiandong Wu, Zimin Ma, HagitPeretz-Soroka, Michael Zhang, Paul Komenda, Navdeep Tangri, Yong Liu, Claudio Rigatto, and Francis Lin Rapidand, Low-Cost CRP Measurement by Integrating a Paper-Based Microfluidic Immunoassay with Smartphone (CRP-Chip), Sensors (Basel). 2017 Apr; 17(4): 684.
37. Min-Ho Lee, Kuk-Nyung Lee, Suk-Won Jung, Won-Hyo Kim, Kyu-Sik Shin, Woo-Kyeong Seong, International Journal of Nanomedicine 2008:3(1) 117–124.
Content type: Article
Appears in Collections:Радіоелектроніка та телекомунікації. – 2018. – №909

Files in This Item:
File Description SizeFormat 
2018n909_Kutova_O-Isfet_sensors_for_biomedical_51-61.pdf440.29 kBAdobe PDFView/Open
2018n909_Kutova_O-Isfet_sensors_for_biomedical_51-61__COVER.png364.5 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.