https://oldena.lpnu.ua/handle/ntb/46486
Title: | Removal of Petroleum from Aqueous Systems by Poly(divinylbenzene) and Poly(methyl methacrylate-divinylbenzene) Resins: Isothermal and Kinetic Studies |
Other Titles: | Видалення нафти з водних систем полідивінілбензеновими та поліметилметакрилат-дивінілбензеновими смолами: ізотермальні та кінетичні дослідження |
Authors: | Silva, Carla Rocha, Paulo Aversa, Thiago Lucas, Elizabete |
Affiliation: | Universidade Federal do Rio de Janeiro Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ) |
Bibliographic description (Ukraine): | Removal of Petroleum from Aqueous Systems by Poly(divinylbenzene) and Poly(methyl methacrylate-divinylbenzene) Resins: Isothermal and Kinetic Studies / Carla Silva, Paulo Rocha, Thiago Aversa, Elizabete Lucas // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 399–406. |
Bibliographic description (International): | Removal of Petroleum from Aqueous Systems by Poly(divinylbenzene) and Poly(methyl methacrylate-divinylbenzene) Resins: Isothermal and Kinetic Studies / Carla Silva, Paulo Rocha, Thiago Aversa, Elizabete Lucas // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 399–406. |
Is part of: | Chemistry & Chemical Technology, 3 (13), 2019 |
Issue: | 3 |
Issue Date: | 28-Feb-2019 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
Keywords: | оброблення нафтовмісної води адсорбція пористі полімерні смоли ізотерма кінетична модель oily water treatment adsorption porous polymer resins isotherm model kinetic model |
Number of pages: | 8 |
Page range: | 399-406 |
Start page: | 399 |
End page: | 406 |
Abstract: | та дивінілбензенова (ДВБ) смоли для
адсорбції нафти в штучному середовищі нафта-вода.
Дослідження проводили для двох процесів: (i) безперервний
процес для оцінювання кількості води з нафтою, яку можна
елюювати до досягнення межі насичення смол; і (ii)
періодичний процес для одержання кінетичної та ізотермічної
моделі двох смол., Встановлено, що для обох смол результати
найкраще відповідають ізотермі Фройндліха та кінетичній
моделі псевдодругого порядку. Знайдені значення низької енергії
активації свідчать про фізичну адсорбцію між смолами та
нафтою. Показано, що незважаючи на непогану ефективність
ДВБ смоли щодо видалення нафти, її можна замінити
промисловою смолою MMA-ДВБ, завдяки таким перевагам як
менша вартість, токсичність та легкість регенерації. In this study, the performance of two polymer resins was evaluated, one composed of methyl methacrylate-divinylbenzene (MMA-DVB) and the other of only divinylbenzene (DVB), for adsorption of oil in synthetic oily wastewater. The tests were carried out using two processes: (i) continuous flow, to assess the quantity of oily water that can be eluted until reaching the saturation point of resins; and (ii) batch, to obtain information about the best-fitting kinetic and isotherm models for the two resins. The results for both resins showed better fits to the Freundlich isotherm model and the pseudo-second-order kinetic model. The low activation energy values found suggest physical adsorption between the resins and oil. Although DVB resin has presented slightly better oil removal efficiency than the MMA-DVB one, the results showed that DVB resin can be industrially replaced by MMA-DVB resin, due to the latter advantages: lower cost, lower toxicity and easy regeneration, as indicated by the kinetic and isothermstudies. |
URI: | https://ena.lpnu.ua/handle/ntb/46486 |
Copyright owner: | © Національний університет „Львівська політехніка“, 2019 © Silva C., Rocha P., Aversa T., Lucas E., 2019 |
URL for reference material: | https://doi.org/10.1016/j.jhazmat.2009.05.044 https://doi.org/10.1016/S0043-1354(01)00070-7 https://doi.org/10.1351/PAC-CON-08-07-21 https://doi.org/10.1016/j.biortech.2010.03.079 https://doi.org/10.1002/0471440264.pst641 https://doi.org/10.1016/j.jhazmat.2006.09.060 https://doi.org/10.1016/S0015-1882(13)70168-X https://doi.org/10.2118/183627-PA https://doi.org/10.1016/j.psep.2016.01.010 https://doi.org/10.1007/BF02493612 https://doi.org/10.1016/j.jhazmat.2011.03.055 https://doi.org/10.1093/ijlct/cts049 https://doi.org/10.1016/j.polymer.2003.11.013 https://doi.org/10.1016/j.jcis.2008.09.006 https://doi.org/10.1016/j.chroma.2005.04.010 https://doi.org/10.1016/0021-9673(94)00766-3 https://doi.org/10.1016/S0021-9673(96)00710-8 https://doi.org/10.1016/S0014-3057(97)00099-2 https://doi.org/10.1021/ie8012242 https://doi.org/10.1016/j.seppur.2008.06.002 https://doi.org/10.1016/j.seppur.2013.07.041 https://doi.org/10.4322/polimeros.2013.048 https://doi.org/10.1016/j.jenvman.2015.04.025 https://doi.org/10.1590/S0104-14282004000300017 https://doi.org/10.1590/S0104-14282006000300012 https://doi.org/10.1080/10934529.2016.1159872 https://doi.org/10.1007/978-1-4615-2902-6_9 https://doi.org/10.1080/09593331708616362 https://doi.org/10.1016/j.jhazmat.2012.03.053 https://doi.org/10.1002/app.24702 https://doi.org/10.1016/j.reactfunctpolym.2005.10.024 https://doi.org/10.1016/j.jhazmat.2007.03.061 https://doi.org/10.1590/S0100-40422004000500015 https://doi.org/10.1016/j.jhazmat.2014.07.071 https://doi.org/10.1016/j.jcis.2004.03.048 https://doi.org/10.1007/s10450-013-9529-0 |
References (Ukraine): | 1. StephensonM.: Soc. Pet. Eng., 1992, 44, 548. 2. Fakhru’l-Razia A., Pendashteha A., Abdullaha L. et al.: J. Hazard. Mat., 2009, 170, 530. https://doi.org/10.1016/j.jhazmat.2009.05.044 3. McCormack P., Jones P., HetheridgeM., Rowland S.:Wat. Res., 2001, 35, 3567. https://doi.org/10.1016/S0043-1354(01)00070-7 4. Lucas E., Mansur C., Spinelli L., Queirós Y.: Pure Appl. Chem., 2009, 81, 473. https://doi.org/10.1351/PAC-CON-08-07-21 5. Srinivasan A., Viraraghavan T.: Bioresour. Technol., 2010, 101, 6594. https://doi.org/10.1016/j.biortech.2010.03.079 6. Lucas E., Spinelli L., Khalil C.: Polymers Applications in Petroleum Production [in:]Mark H. (Ed.), Encyclopedia of Polymer Science and Technology. JohnWiley & Sons, Inc., 2015. https://doi.org/10.1002/0471440264.pst641 7. Rajakovic V., Aleksic G., RadeticM., Rajakovic L.: J. Hazard. Mat., 2007, 143, 494. https://doi.org/10.1016/j.jhazmat.2006.09.060 8. Barrufet M., Burnett D.,Mareth D.: SPE Annual Techn. Conf. and Exhib., Dallas 2005, 9. 9. Tao F., Hobbs R., Sides J. et al.: SPE/EPA Exploration and Production Environmental Conference, San Antonio, 1993, 3. 10. Souza A., Furtado C.: Bol. Tec. Prod. Petrol. Rio de Janeiro, 2006, 1, 215. 11. Robinson D.: Filtration + Separation, 2013, 50, 38. https://doi.org/10.1016/S0015-1882(13)70168-X 12. BataeeM., Irawan S., Ridha S. et al.: SPE Journal, 2017, 22, 1. https://doi.org/10.2118/183627-PA 13. CONAMA (Conselho Nacional doMeio Ambiente) – Resolution number 393, 2007. 14. Den BroekW., Plat R., Der ZandeM.: SPE Int. Oil and Gas Conf. and Exhib. in China, Beijing 1998. 15. Munirasu S., HaijaM., Banat F.: Proc. Saf. Environ. Prot., 2016, 100, 183. https://doi.org/10.1016/j.psep.2016.01.010 16. Masqué N., GaliàM., Borrull F.: Chromatographia, 1999, 50, 21. https://doi.org/10.1007/BF02493612 17. Sokker H., El-Sawyb N., HassanM., El-Anadoul B.: J. Hazard. Mat., 2011, 190, 359. https://doi.org/10.1016/j.jhazmat.2011.03.055 18. Okiel K., El-SayedM., El-KadyM.: Egypt. J. Pet., 2011, 20, 9. 19. Igunnu E., Chen G.: Int. J. Low Carbon Technol., 2014, 9, 157. https://doi.org/10.1093/ijlct/cts049 20. Li H., Jiao Y., XuM. et al.: Polymer, 2004, 45, 181. https://doi.org/10.1016/j.polymer.2003.11.013 21. Huang J., Huang K., Wang A., Yang Q.: J. Colloid Interf. Sci., 2008, 327, 302. https://doi.org/10.1016/j.jcis.2008.09.006 22. Fontanals N., GaliáM., Cormack P. et al.: J. Chromatogr. A, 2005, 1075, 51. https://doi.org/10.1016/j.chroma.2005.04.010 23. Dumont P., Fritz J.: J. Chromatogr. A, 1995, 691, 123. https://doi.org/10.1016/0021-9673(94)00766-3 24. Nash D., McCreath G., Chase H.: J. Chromatogr. A, 1997, 758, 53. https://doi.org/10.1016/S0021-9673(96)00710-8 25. Iayadene F., Guettaf H., Bencheikh Z. et al.: Eur. Polym. J., 1998, 34, 219. https://doi.org/10.1016/S0014-3057(97)00099-2 26. Bouvier E., Meirowitz R., McDonald P.: Pat. US 6254780. Publ. Jul. 3, 2001. 27. Zhou Y., Chen L., Hu X., Lu J.: Ind. Eng. Chem. Res., 2009, 48, 1660. https://doi.org/10.1021/ie8012242 28. Zhou Y., Tang X., Xiao-Men H. et al.: Sep. Pur. Technol., 2008, 63, 400. https://doi.org/10.1016/j.seppur.2008.06.002 29. Kundu P., Mishra I.: Sep. Pur. Technol., 2013, 118, 519. https://doi.org/10.1016/j.seppur.2013.07.041 30. ClarisseM., Queirós Y., Barbosa C. et al.: Chem. Chem. Technol., 2012, 6, 145. 31. Aversa T., Queirós Y., Lucas E., Louvisse A.: Polímeros, 2014, 24, 45. https://doi.org/10.4322/polimeros.2013.048 32. Silva C., Rocha Q., Rocha P. et al.: J. Environ. Manag., 2015, 57, 205. https://doi.org/10.1016/j.jenvman.2015.04.025 33. Cardoso A., Lucas E., Barbosa C.: Polímeros, 2004, 14, 201. https://doi.org/10.1590/S0104-14282004000300017 34. Queirós Y., ClarisseM., Oliveira R. et al.: Polímeros, 2006, 16, 224. https://doi.org/10.1590/S0104-14282006000300012 35. Aversa T., Silva C., Rocha Q., Lucas E.: J. Environ. Sci. Health A, 2016, 51, 634. https://doi.org/10.1080/10934529.2016.1159872 36. Tibbetts P., Buchanan I., Gawel L., Large R.: A Comprehensive Determination of ProducedWater Composition [in:] Ray J., Engelhardt F. (Eds.), ProducedWater: Technological/Environmental Issues and Solutions. Springer Science & BusinessMedia, New York 1992. https://doi.org/10.1007/978-1-4615-2902-6_9 37. Galkin A.: J. Anal. Chem., 2004, 50, 1078. 38. Rendell D.: Fluorescense and Phosforescence. JohnWiley& Sons, Bristol 1987. 39. Adamson A.: Physical Chemistry of Surfaces. John Wiley& Sons, California 1990. 40. Ho Y., McKay G.: Chem. Eng. Res. Design, 1998, 76, 332. 41. Sho Y., Wase J. A. D., Forster F. C.: Environ. Technol., 1996, 17, 71. https://doi.org/10.1080/09593331708616362 42. Smith F., Hashemi J.: Fundamentos de Engenharia e Ciência dos Materiais.McGraw Hill Brasil, Porto Alegre 2012. 43. Huang J., Jin X., Mao J. et al.: J. Hazard. Mat., 2012, 217, 406. https://doi.org/10.1016/j.jhazmat.2012.03.053 44. Cheng S., Tang H., Yan H.: J. Appl. Polym. Sci., 2006, 102, 4652. https://doi.org/10.1002/app.24702 45. Drechny D., Trochimczuk A.: React. Funct. Polym., 2006, 66, 323. https://doi.org/10.1016/j.reactfunctpolym.2005.10.024 46. Kennedy L., Vijaya J., Sekaran G., Kayalvizhi K.: J. Hazard. Mat., 2007, 149, 134. https://doi.org/10.1016/j.jhazmat.2007.03.061 47. Teixeira V., Coutinho F., Gomes A.: Quim. Nova, 2004, 27, 754. https://doi.org/10.1590/S0100-40422004000500015 48. Guimarães D., Leão V.: J. Hazard. Mat., 2014, 280, 209. https://doi.org/10.1016/j.jhazmat.2014.07.071 49. Azizian S.: J. Colloid Interf. Sci., 2004, 276, 47. https://doi.org/10.1016/j.jcis.2004.03.048 50. Plazinski W., Dziuba J., Rudzinski W.: Adsorption, 2013, 19, 1055. https://doi.org/10.1007/s10450-013-9529-0 |
References (International): | 1. StephensonM., Soc. Pet. Eng., 1992, 44, 548. 2. Fakhru’l-Razia A., Pendashteha A., Abdullaha L. et al., J. Hazard. Mat., 2009, 170, 530. https://doi.org/10.1016/j.jhazmat.2009.05.044 3. McCormack P., Jones P., HetheridgeM., Rowland S.:Wat. Res., 2001, 35, 3567. https://doi.org/10.1016/S0043-1354(01)00070-7 4. Lucas E., Mansur C., Spinelli L., Queirós Y., Pure Appl. Chem., 2009, 81, 473. https://doi.org/10.1351/PAC-CON-08-07-21 5. Srinivasan A., Viraraghavan T., Bioresour. Technol., 2010, 101, 6594. https://doi.org/10.1016/j.biortech.2010.03.079 6. Lucas E., Spinelli L., Khalil C., Polymers Applications in Petroleum Production [in:]Mark H. (Ed.), Encyclopedia of Polymer Science and Technology. JohnWiley & Sons, Inc., 2015. https://doi.org/10.1002/0471440264.pst641 7. Rajakovic V., Aleksic G., RadeticM., Rajakovic L., J. Hazard. Mat., 2007, 143, 494. https://doi.org/10.1016/j.jhazmat.2006.09.060 8. Barrufet M., Burnett D.,Mareth D., SPE Annual Techn. Conf. and Exhib., Dallas 2005, 9. 9. Tao F., Hobbs R., Sides J. et al., SPE/EPA Exploration and Production Environmental Conference, San Antonio, 1993, 3. 10. Souza A., Furtado C., Bol. Tec. Prod. Petrol. Rio de Janeiro, 2006, 1, 215. 11. Robinson D., Filtration + Separation, 2013, 50, 38. https://doi.org/10.1016/S0015-1882(13)70168-X 12. BataeeM., Irawan S., Ridha S. et al., SPE Journal, 2017, 22, 1. https://doi.org/10.2118/183627-PA 13. CONAMA (Conselho Nacional doMeio Ambiente) – Resolution number 393, 2007. 14. Den BroekW., Plat R., Der ZandeM., SPE Int. Oil and Gas Conf. and Exhib. in China, Beijing 1998. 15. Munirasu S., HaijaM., Banat F., Proc. Saf. Environ. Prot., 2016, 100, 183. https://doi.org/10.1016/j.psep.2016.01.010 16. Masqué N., GaliàM., Borrull F., Chromatographia, 1999, 50, 21. https://doi.org/10.1007/BF02493612 17. Sokker H., El-Sawyb N., HassanM., El-Anadoul B., J. Hazard. Mat., 2011, 190, 359. https://doi.org/10.1016/j.jhazmat.2011.03.055 18. Okiel K., El-SayedM., El-KadyM., Egypt. J. Pet., 2011, 20, 9. 19. Igunnu E., Chen G., Int. J. Low Carbon Technol., 2014, 9, 157. https://doi.org/10.1093/ijlct/cts049 20. Li H., Jiao Y., XuM. et al., Polymer, 2004, 45, 181. https://doi.org/10.1016/j.polymer.2003.11.013 21. Huang J., Huang K., Wang A., Yang Q., J. Colloid Interf. Sci., 2008, 327, 302. https://doi.org/10.1016/j.jcis.2008.09.006 22. Fontanals N., GaliáM., Cormack P. et al., J. Chromatogr. A, 2005, 1075, 51. https://doi.org/10.1016/j.chroma.2005.04.010 23. Dumont P., Fritz J., J. Chromatogr. A, 1995, 691, 123. https://doi.org/10.1016/0021-9673(94)00766-3 24. Nash D., McCreath G., Chase H., J. Chromatogr. A, 1997, 758, 53. https://doi.org/10.1016/S0021-9673(96)00710-8 25. Iayadene F., Guettaf H., Bencheikh Z. et al., Eur. Polym. J., 1998, 34, 219. https://doi.org/10.1016/S0014-3057(97)00099-2 26. Bouvier E., Meirowitz R., McDonald P., Pat. US 6254780. Publ. Jul. 3, 2001. 27. Zhou Y., Chen L., Hu X., Lu J., Ind. Eng. Chem. Res., 2009, 48, 1660. https://doi.org/10.1021/ie8012242 28. Zhou Y., Tang X., Xiao-Men H. et al., Sep. Pur. Technol., 2008, 63, 400. https://doi.org/10.1016/j.seppur.2008.06.002 29. Kundu P., Mishra I., Sep. Pur. Technol., 2013, 118, 519. https://doi.org/10.1016/j.seppur.2013.07.041 30. ClarisseM., Queirós Y., Barbosa C. et al., Chem. Chem. Technol., 2012, 6, 145. 31. Aversa T., Queirós Y., Lucas E., Louvisse A., Polímeros, 2014, 24, 45. https://doi.org/10.4322/polimeros.2013.048 32. Silva C., Rocha Q., Rocha P. et al., J. Environ. Manag., 2015, 57, 205. https://doi.org/10.1016/j.jenvman.2015.04.025 33. Cardoso A., Lucas E., Barbosa C., Polímeros, 2004, 14, 201. https://doi.org/10.1590/S0104-14282004000300017 34. Queirós Y., ClarisseM., Oliveira R. et al., Polímeros, 2006, 16, 224. https://doi.org/10.1590/S0104-14282006000300012 35. Aversa T., Silva C., Rocha Q., Lucas E., J. Environ. Sci. Health A, 2016, 51, 634. https://doi.org/10.1080/10934529.2016.1159872 36. Tibbetts P., Buchanan I., Gawel L., Large R., A Comprehensive Determination of ProducedWater Composition [in:] Ray J., Engelhardt F. (Eds.), ProducedWater: Technological/Environmental Issues and Solutions. Springer Science & BusinessMedia, New York 1992. https://doi.org/10.1007/978-1-4615-2902-6_9 37. Galkin A., J. Anal. Chem., 2004, 50, 1078. 38. Rendell D., Fluorescense and Phosforescence. JohnWiley& Sons, Bristol 1987. 39. Adamson A., Physical Chemistry of Surfaces. John Wiley& Sons, California 1990. 40. Ho Y., McKay G., Chem. Eng. Res. Design, 1998, 76, 332. 41. Sho Y., Wase J. A. D., Forster F. C., Environ. Technol., 1996, 17, 71. https://doi.org/10.1080/09593331708616362 42. Smith F., Hashemi J., Fundamentos de Engenharia e Ciência dos Materiais.McGraw Hill Brasil, Porto Alegre 2012. 43. Huang J., Jin X., Mao J. et al., J. Hazard. Mat., 2012, 217, 406. https://doi.org/10.1016/j.jhazmat.2012.03.053 44. Cheng S., Tang H., Yan H., J. Appl. Polym. Sci., 2006, 102, 4652. https://doi.org/10.1002/app.24702 45. Drechny D., Trochimczuk A., React. Funct. Polym., 2006, 66, 323. https://doi.org/10.1016/j.reactfunctpolym.2005.10.024 46. Kennedy L., Vijaya J., Sekaran G., Kayalvizhi K., J. Hazard. Mat., 2007, 149, 134. https://doi.org/10.1016/j.jhazmat.2007.03.061 47. Teixeira V., Coutinho F., Gomes A., Quim. Nova, 2004, 27, 754. https://doi.org/10.1590/S0100-40422004000500015 48. Guimarães D., Leão V., J. Hazard. Mat., 2014, 280, 209. https://doi.org/10.1016/j.jhazmat.2014.07.071 49. Azizian S., J. Colloid Interf. Sci., 2004, 276, 47. https://doi.org/10.1016/j.jcis.2004.03.048 50. Plazinski W., Dziuba J., Rudzinski W., Adsorption, 2013, 19, 1055. https://doi.org/10.1007/s10450-013-9529-0 |
Content type: | Article |
Appears in Collections: | Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 3 |
File | Description | Size | Format | |
---|---|---|---|---|
2019v13n3_Silva_C-Removal_of_Petroleum_from_399-406.pdf | 624 kB | Adobe PDF | View/Open | |
2019v13n3_Silva_C-Removal_of_Petroleum_from_399-406__COVER.png | 567.72 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.