Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46486
Title: Removal of Petroleum from Aqueous Systems by Poly(divinylbenzene) and Poly(methyl methacrylate-divinylbenzene) Resins: Isothermal and Kinetic Studies
Other Titles: Видалення нафти з водних систем полідивінілбензеновими та поліметилметакрилат-дивінілбензеновими смолами: ізотермальні та кінетичні дослідження
Authors: Silva, Carla
Rocha, Paulo
Aversa, Thiago
Lucas, Elizabete
Affiliation: Universidade Federal do Rio de Janeiro
Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ)
Bibliographic description (Ukraine): Removal of Petroleum from Aqueous Systems by Poly(divinylbenzene) and Poly(methyl methacrylate-divinylbenzene) Resins: Isothermal and Kinetic Studies / Carla Silva, Paulo Rocha, Thiago Aversa, Elizabete Lucas // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 399–406.
Bibliographic description (International): Removal of Petroleum from Aqueous Systems by Poly(divinylbenzene) and Poly(methyl methacrylate-divinylbenzene) Resins: Isothermal and Kinetic Studies / Carla Silva, Paulo Rocha, Thiago Aversa, Elizabete Lucas // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 399–406.
Is part of: Chemistry & Chemical Technology, 3 (13), 2019
Issue: 3
Issue Date: 28-Feb-2019
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
Keywords: оброблення нафтовмісної води
адсорбція
пористі полімерні смоли
ізотерма
кінетична модель
oily water treatment
adsorption
porous polymer resins
isotherm model
kinetic model
Number of pages: 8
Page range: 399-406
Start page: 399
End page: 406
Abstract: та дивінілбензенова (ДВБ) смоли для адсорбції нафти в штучному середовищі нафта-вода. Дослідження проводили для двох процесів: (i) безперервний процес для оцінювання кількості води з нафтою, яку можна елюювати до досягнення межі насичення смол; і (ii) періодичний процес для одержання кінетичної та ізотермічної моделі двох смол., Встановлено, що для обох смол результати найкраще відповідають ізотермі Фройндліха та кінетичній моделі псевдодругого порядку. Знайдені значення низької енергії активації свідчать про фізичну адсорбцію між смолами та нафтою. Показано, що незважаючи на непогану ефективність ДВБ смоли щодо видалення нафти, її можна замінити промисловою смолою MMA-ДВБ, завдяки таким перевагам як менша вартість, токсичність та легкість регенерації.
In this study, the performance of two polymer resins was evaluated, one composed of methyl methacrylate-divinylbenzene (MMA-DVB) and the other of only divinylbenzene (DVB), for adsorption of oil in synthetic oily wastewater. The tests were carried out using two processes: (i) continuous flow, to assess the quantity of oily water that can be eluted until reaching the saturation point of resins; and (ii) batch, to obtain information about the best-fitting kinetic and isotherm models for the two resins. The results for both resins showed better fits to the Freundlich isotherm model and the pseudo-second-order kinetic model. The low activation energy values found suggest physical adsorption between the resins and oil. Although DVB resin has presented slightly better oil removal efficiency than the MMA-DVB one, the results showed that DVB resin can be industrially replaced by MMA-DVB resin, due to the latter advantages: lower cost, lower toxicity and easy regeneration, as indicated by the kinetic and isothermstudies.
URI: https://ena.lpnu.ua/handle/ntb/46486
Copyright owner: © Національний університет „Львівська політехніка“, 2019
© Silva C., Rocha P., Aversa T., Lucas E., 2019
URL for reference material: https://doi.org/10.1016/j.jhazmat.2009.05.044
https://doi.org/10.1016/S0043-1354(01)00070-7
https://doi.org/10.1351/PAC-CON-08-07-21
https://doi.org/10.1016/j.biortech.2010.03.079
https://doi.org/10.1002/0471440264.pst641
https://doi.org/10.1016/j.jhazmat.2006.09.060
https://doi.org/10.1016/S0015-1882(13)70168-X
https://doi.org/10.2118/183627-PA
https://doi.org/10.1016/j.psep.2016.01.010
https://doi.org/10.1007/BF02493612
https://doi.org/10.1016/j.jhazmat.2011.03.055
https://doi.org/10.1093/ijlct/cts049
https://doi.org/10.1016/j.polymer.2003.11.013
https://doi.org/10.1016/j.jcis.2008.09.006
https://doi.org/10.1016/j.chroma.2005.04.010
https://doi.org/10.1016/0021-9673(94)00766-3
https://doi.org/10.1016/S0021-9673(96)00710-8
https://doi.org/10.1016/S0014-3057(97)00099-2
https://doi.org/10.1021/ie8012242
https://doi.org/10.1016/j.seppur.2008.06.002
https://doi.org/10.1016/j.seppur.2013.07.041
https://doi.org/10.4322/polimeros.2013.048
https://doi.org/10.1016/j.jenvman.2015.04.025
https://doi.org/10.1590/S0104-14282004000300017
https://doi.org/10.1590/S0104-14282006000300012
https://doi.org/10.1080/10934529.2016.1159872
https://doi.org/10.1007/978-1-4615-2902-6_9
https://doi.org/10.1080/09593331708616362
https://doi.org/10.1016/j.jhazmat.2012.03.053
https://doi.org/10.1002/app.24702
https://doi.org/10.1016/j.reactfunctpolym.2005.10.024
https://doi.org/10.1016/j.jhazmat.2007.03.061
https://doi.org/10.1590/S0100-40422004000500015
https://doi.org/10.1016/j.jhazmat.2014.07.071
https://doi.org/10.1016/j.jcis.2004.03.048
https://doi.org/10.1007/s10450-013-9529-0
References (Ukraine): 1. StephensonM.: Soc. Pet. Eng., 1992, 44, 548.
2. Fakhru’l-Razia A., Pendashteha A., Abdullaha L. et al.: J. Hazard. Mat., 2009, 170, 530. https://doi.org/10.1016/j.jhazmat.2009.05.044
3. McCormack P., Jones P., HetheridgeM., Rowland S.:Wat. Res., 2001, 35, 3567. https://doi.org/10.1016/S0043-1354(01)00070-7
4. Lucas E., Mansur C., Spinelli L., Queirós Y.: Pure Appl. Chem., 2009, 81, 473. https://doi.org/10.1351/PAC-CON-08-07-21
5. Srinivasan A., Viraraghavan T.: Bioresour. Technol., 2010, 101, 6594. https://doi.org/10.1016/j.biortech.2010.03.079
6. Lucas E., Spinelli L., Khalil C.: Polymers Applications in Petroleum Production [in:]Mark H. (Ed.), Encyclopedia of Polymer Science and Technology. JohnWiley & Sons, Inc., 2015. https://doi.org/10.1002/0471440264.pst641
7. Rajakovic V., Aleksic G., RadeticM., Rajakovic L.: J. Hazard. Mat., 2007, 143, 494. https://doi.org/10.1016/j.jhazmat.2006.09.060
8. Barrufet M., Burnett D.,Mareth D.: SPE Annual Techn. Conf. and Exhib., Dallas 2005, 9.
9. Tao F., Hobbs R., Sides J. et al.: SPE/EPA Exploration and Production Environmental Conference, San Antonio, 1993, 3.
10. Souza A., Furtado C.: Bol. Tec. Prod. Petrol. Rio de Janeiro, 2006, 1, 215.
11. Robinson D.: Filtration + Separation, 2013, 50, 38. https://doi.org/10.1016/S0015-1882(13)70168-X
12. BataeeM., Irawan S., Ridha S. et al.: SPE Journal, 2017, 22, 1. https://doi.org/10.2118/183627-PA
13. CONAMA (Conselho Nacional doMeio Ambiente) – Resolution number 393, 2007.
14. Den BroekW., Plat R., Der ZandeM.: SPE Int. Oil and Gas Conf. and Exhib. in China, Beijing 1998.
15. Munirasu S., HaijaM., Banat F.: Proc. Saf. Environ. Prot., 2016, 100, 183. https://doi.org/10.1016/j.psep.2016.01.010
16. Masqué N., GaliàM., Borrull F.: Chromatographia, 1999, 50, 21. https://doi.org/10.1007/BF02493612
17. Sokker H., El-Sawyb N., HassanM., El-Anadoul B.: J. Hazard. Mat., 2011, 190, 359. https://doi.org/10.1016/j.jhazmat.2011.03.055
18. Okiel K., El-SayedM., El-KadyM.: Egypt. J. Pet., 2011, 20, 9.
19. Igunnu E., Chen G.: Int. J. Low Carbon Technol., 2014, 9, 157. https://doi.org/10.1093/ijlct/cts049
20. Li H., Jiao Y., XuM. et al.: Polymer, 2004, 45, 181. https://doi.org/10.1016/j.polymer.2003.11.013
21. Huang J., Huang K., Wang A., Yang Q.: J. Colloid Interf. Sci., 2008, 327, 302. https://doi.org/10.1016/j.jcis.2008.09.006
22. Fontanals N., GaliáM., Cormack P. et al.: J. Chromatogr. A, 2005, 1075, 51. https://doi.org/10.1016/j.chroma.2005.04.010
23. Dumont P., Fritz J.: J. Chromatogr. A, 1995, 691, 123. https://doi.org/10.1016/0021-9673(94)00766-3
24. Nash D., McCreath G., Chase H.: J. Chromatogr. A, 1997, 758, 53. https://doi.org/10.1016/S0021-9673(96)00710-8
25. Iayadene F., Guettaf H., Bencheikh Z. et al.: Eur. Polym. J., 1998, 34, 219. https://doi.org/10.1016/S0014-3057(97)00099-2
26. Bouvier E., Meirowitz R., McDonald P.: Pat. US 6254780. Publ. Jul. 3, 2001.
27. Zhou Y., Chen L., Hu X., Lu J.: Ind. Eng. Chem. Res., 2009, 48, 1660. https://doi.org/10.1021/ie8012242
28. Zhou Y., Tang X., Xiao-Men H. et al.: Sep. Pur. Technol., 2008, 63, 400. https://doi.org/10.1016/j.seppur.2008.06.002
29. Kundu P., Mishra I.: Sep. Pur. Technol., 2013, 118, 519. https://doi.org/10.1016/j.seppur.2013.07.041
30. ClarisseM., Queirós Y., Barbosa C. et al.: Chem. Chem. Technol., 2012, 6, 145.
31. Aversa T., Queirós Y., Lucas E., Louvisse A.: Polímeros, 2014, 24, 45. https://doi.org/10.4322/polimeros.2013.048
32. Silva C., Rocha Q., Rocha P. et al.: J. Environ. Manag., 2015, 57, 205. https://doi.org/10.1016/j.jenvman.2015.04.025
33. Cardoso A., Lucas E., Barbosa C.: Polímeros, 2004, 14, 201. https://doi.org/10.1590/S0104-14282004000300017
34. Queirós Y., ClarisseM., Oliveira R. et al.: Polímeros, 2006, 16, 224. https://doi.org/10.1590/S0104-14282006000300012
35. Aversa T., Silva C., Rocha Q., Lucas E.: J. Environ. Sci. Health A, 2016, 51, 634. https://doi.org/10.1080/10934529.2016.1159872
36. Tibbetts P., Buchanan I., Gawel L., Large R.: A Comprehensive Determination of ProducedWater Composition [in:] Ray J., Engelhardt F. (Eds.), ProducedWater: Technological/Environmental Issues and Solutions. Springer Science & BusinessMedia, New York 1992. https://doi.org/10.1007/978-1-4615-2902-6_9
37. Galkin A.: J. Anal. Chem., 2004, 50, 1078.
38. Rendell D.: Fluorescense and Phosforescence. JohnWiley& Sons, Bristol 1987.
39. Adamson A.: Physical Chemistry of Surfaces. John Wiley& Sons, California 1990.
40. Ho Y., McKay G.: Chem. Eng. Res. Design, 1998, 76, 332.
41. Sho Y., Wase J. A. D., Forster F. C.: Environ. Technol., 1996, 17, 71. https://doi.org/10.1080/09593331708616362
42. Smith F., Hashemi J.: Fundamentos de Engenharia e Ciência dos Materiais.McGraw Hill Brasil, Porto Alegre 2012.
43. Huang J., Jin X., Mao J. et al.: J. Hazard. Mat., 2012, 217, 406. https://doi.org/10.1016/j.jhazmat.2012.03.053
44. Cheng S., Tang H., Yan H.: J. Appl. Polym. Sci., 2006, 102, 4652. https://doi.org/10.1002/app.24702
45. Drechny D., Trochimczuk A.: React. Funct. Polym., 2006, 66, 323. https://doi.org/10.1016/j.reactfunctpolym.2005.10.024
46. Kennedy L., Vijaya J., Sekaran G., Kayalvizhi K.: J. Hazard. Mat., 2007, 149, 134. https://doi.org/10.1016/j.jhazmat.2007.03.061
47. Teixeira V., Coutinho F., Gomes A.: Quim. Nova, 2004, 27, 754. https://doi.org/10.1590/S0100-40422004000500015
48. Guimarães D., Leão V.: J. Hazard. Mat., 2014, 280, 209. https://doi.org/10.1016/j.jhazmat.2014.07.071
49. Azizian S.: J. Colloid Interf. Sci., 2004, 276, 47. https://doi.org/10.1016/j.jcis.2004.03.048
50. Plazinski W., Dziuba J., Rudzinski W.: Adsorption, 2013, 19, 1055. https://doi.org/10.1007/s10450-013-9529-0
References (International): 1. StephensonM., Soc. Pet. Eng., 1992, 44, 548.
2. Fakhru’l-Razia A., Pendashteha A., Abdullaha L. et al., J. Hazard. Mat., 2009, 170, 530. https://doi.org/10.1016/j.jhazmat.2009.05.044
3. McCormack P., Jones P., HetheridgeM., Rowland S.:Wat. Res., 2001, 35, 3567. https://doi.org/10.1016/S0043-1354(01)00070-7
4. Lucas E., Mansur C., Spinelli L., Queirós Y., Pure Appl. Chem., 2009, 81, 473. https://doi.org/10.1351/PAC-CON-08-07-21
5. Srinivasan A., Viraraghavan T., Bioresour. Technol., 2010, 101, 6594. https://doi.org/10.1016/j.biortech.2010.03.079
6. Lucas E., Spinelli L., Khalil C., Polymers Applications in Petroleum Production [in:]Mark H. (Ed.), Encyclopedia of Polymer Science and Technology. JohnWiley & Sons, Inc., 2015. https://doi.org/10.1002/0471440264.pst641
7. Rajakovic V., Aleksic G., RadeticM., Rajakovic L., J. Hazard. Mat., 2007, 143, 494. https://doi.org/10.1016/j.jhazmat.2006.09.060
8. Barrufet M., Burnett D.,Mareth D., SPE Annual Techn. Conf. and Exhib., Dallas 2005, 9.
9. Tao F., Hobbs R., Sides J. et al., SPE/EPA Exploration and Production Environmental Conference, San Antonio, 1993, 3.
10. Souza A., Furtado C., Bol. Tec. Prod. Petrol. Rio de Janeiro, 2006, 1, 215.
11. Robinson D., Filtration + Separation, 2013, 50, 38. https://doi.org/10.1016/S0015-1882(13)70168-X
12. BataeeM., Irawan S., Ridha S. et al., SPE Journal, 2017, 22, 1. https://doi.org/10.2118/183627-PA
13. CONAMA (Conselho Nacional doMeio Ambiente) – Resolution number 393, 2007.
14. Den BroekW., Plat R., Der ZandeM., SPE Int. Oil and Gas Conf. and Exhib. in China, Beijing 1998.
15. Munirasu S., HaijaM., Banat F., Proc. Saf. Environ. Prot., 2016, 100, 183. https://doi.org/10.1016/j.psep.2016.01.010
16. Masqué N., GaliàM., Borrull F., Chromatographia, 1999, 50, 21. https://doi.org/10.1007/BF02493612
17. Sokker H., El-Sawyb N., HassanM., El-Anadoul B., J. Hazard. Mat., 2011, 190, 359. https://doi.org/10.1016/j.jhazmat.2011.03.055
18. Okiel K., El-SayedM., El-KadyM., Egypt. J. Pet., 2011, 20, 9.
19. Igunnu E., Chen G., Int. J. Low Carbon Technol., 2014, 9, 157. https://doi.org/10.1093/ijlct/cts049
20. Li H., Jiao Y., XuM. et al., Polymer, 2004, 45, 181. https://doi.org/10.1016/j.polymer.2003.11.013
21. Huang J., Huang K., Wang A., Yang Q., J. Colloid Interf. Sci., 2008, 327, 302. https://doi.org/10.1016/j.jcis.2008.09.006
22. Fontanals N., GaliáM., Cormack P. et al., J. Chromatogr. A, 2005, 1075, 51. https://doi.org/10.1016/j.chroma.2005.04.010
23. Dumont P., Fritz J., J. Chromatogr. A, 1995, 691, 123. https://doi.org/10.1016/0021-9673(94)00766-3
24. Nash D., McCreath G., Chase H., J. Chromatogr. A, 1997, 758, 53. https://doi.org/10.1016/S0021-9673(96)00710-8
25. Iayadene F., Guettaf H., Bencheikh Z. et al., Eur. Polym. J., 1998, 34, 219. https://doi.org/10.1016/S0014-3057(97)00099-2
26. Bouvier E., Meirowitz R., McDonald P., Pat. US 6254780. Publ. Jul. 3, 2001.
27. Zhou Y., Chen L., Hu X., Lu J., Ind. Eng. Chem. Res., 2009, 48, 1660. https://doi.org/10.1021/ie8012242
28. Zhou Y., Tang X., Xiao-Men H. et al., Sep. Pur. Technol., 2008, 63, 400. https://doi.org/10.1016/j.seppur.2008.06.002
29. Kundu P., Mishra I., Sep. Pur. Technol., 2013, 118, 519. https://doi.org/10.1016/j.seppur.2013.07.041
30. ClarisseM., Queirós Y., Barbosa C. et al., Chem. Chem. Technol., 2012, 6, 145.
31. Aversa T., Queirós Y., Lucas E., Louvisse A., Polímeros, 2014, 24, 45. https://doi.org/10.4322/polimeros.2013.048
32. Silva C., Rocha Q., Rocha P. et al., J. Environ. Manag., 2015, 57, 205. https://doi.org/10.1016/j.jenvman.2015.04.025
33. Cardoso A., Lucas E., Barbosa C., Polímeros, 2004, 14, 201. https://doi.org/10.1590/S0104-14282004000300017
34. Queirós Y., ClarisseM., Oliveira R. et al., Polímeros, 2006, 16, 224. https://doi.org/10.1590/S0104-14282006000300012
35. Aversa T., Silva C., Rocha Q., Lucas E., J. Environ. Sci. Health A, 2016, 51, 634. https://doi.org/10.1080/10934529.2016.1159872
36. Tibbetts P., Buchanan I., Gawel L., Large R., A Comprehensive Determination of ProducedWater Composition [in:] Ray J., Engelhardt F. (Eds.), ProducedWater: Technological/Environmental Issues and Solutions. Springer Science & BusinessMedia, New York 1992. https://doi.org/10.1007/978-1-4615-2902-6_9
37. Galkin A., J. Anal. Chem., 2004, 50, 1078.
38. Rendell D., Fluorescense and Phosforescence. JohnWiley& Sons, Bristol 1987.
39. Adamson A., Physical Chemistry of Surfaces. John Wiley& Sons, California 1990.
40. Ho Y., McKay G., Chem. Eng. Res. Design, 1998, 76, 332.
41. Sho Y., Wase J. A. D., Forster F. C., Environ. Technol., 1996, 17, 71. https://doi.org/10.1080/09593331708616362
42. Smith F., Hashemi J., Fundamentos de Engenharia e Ciência dos Materiais.McGraw Hill Brasil, Porto Alegre 2012.
43. Huang J., Jin X., Mao J. et al., J. Hazard. Mat., 2012, 217, 406. https://doi.org/10.1016/j.jhazmat.2012.03.053
44. Cheng S., Tang H., Yan H., J. Appl. Polym. Sci., 2006, 102, 4652. https://doi.org/10.1002/app.24702
45. Drechny D., Trochimczuk A., React. Funct. Polym., 2006, 66, 323. https://doi.org/10.1016/j.reactfunctpolym.2005.10.024
46. Kennedy L., Vijaya J., Sekaran G., Kayalvizhi K., J. Hazard. Mat., 2007, 149, 134. https://doi.org/10.1016/j.jhazmat.2007.03.061
47. Teixeira V., Coutinho F., Gomes A., Quim. Nova, 2004, 27, 754. https://doi.org/10.1590/S0100-40422004000500015
48. Guimarães D., Leão V., J. Hazard. Mat., 2014, 280, 209. https://doi.org/10.1016/j.jhazmat.2014.07.071
49. Azizian S., J. Colloid Interf. Sci., 2004, 276, 47. https://doi.org/10.1016/j.jcis.2004.03.048
50. Plazinski W., Dziuba J., Rudzinski W., Adsorption, 2013, 19, 1055. https://doi.org/10.1007/s10450-013-9529-0
Content type: Article
Appears in Collections:Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 3

Files in This Item:
File Description SizeFormat 
2019v13n3_Silva_C-Removal_of_Petroleum_from_399-406.pdf624 kBAdobe PDFView/Open
2019v13n3_Silva_C-Removal_of_Petroleum_from_399-406__COVER.png567.72 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.