DC Field | Value | Language |
dc.contributor.author | Silva, Carla | |
dc.contributor.author | Rocha, Paulo | |
dc.contributor.author | Aversa, Thiago | |
dc.contributor.author | Lucas, Elizabete | |
dc.date.accessioned | 2020-03-02T13:09:26Z | - |
dc.date.available | 2020-03-02T13:09:26Z | - |
dc.date.created | 2019-02-28 | |
dc.date.issued | 2019-02-28 | |
dc.identifier.citation | Removal of Petroleum from Aqueous Systems by Poly(divinylbenzene) and Poly(methyl methacrylate-divinylbenzene) Resins: Isothermal and Kinetic Studies / Carla Silva, Paulo Rocha, Thiago Aversa, Elizabete Lucas // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 399–406. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46486 | - |
dc.description.abstract | та дивінілбензенова (ДВБ) смоли для
адсорбції нафти в штучному середовищі нафта-вода.
Дослідження проводили для двох процесів: (i) безперервний
процес для оцінювання кількості води з нафтою, яку можна
елюювати до досягнення межі насичення смол; і (ii)
періодичний процес для одержання кінетичної та ізотермічної
моделі двох смол., Встановлено, що для обох смол результати
найкраще відповідають ізотермі Фройндліха та кінетичній
моделі псевдодругого порядку. Знайдені значення низької енергії
активації свідчать про фізичну адсорбцію між смолами та
нафтою. Показано, що незважаючи на непогану ефективність
ДВБ смоли щодо видалення нафти, її можна замінити
промисловою смолою MMA-ДВБ, завдяки таким перевагам як
менша вартість, токсичність та легкість регенерації. | |
dc.description.abstract | In this study, the performance of two polymer
resins was evaluated, one composed of methyl
methacrylate-divinylbenzene (MMA-DVB) and the other
of only divinylbenzene (DVB), for adsorption of oil in
synthetic oily wastewater. The tests were carried out using
two processes: (i) continuous flow, to assess the quantity
of oily water that can be eluted until reaching the saturation
point of resins; and (ii) batch, to obtain information about
the best-fitting kinetic and isotherm models for the two
resins. The results for both resins showed better fits to the
Freundlich isotherm model and the pseudo-second-order
kinetic model. The low activation energy values found
suggest physical adsorption between the resins and oil.
Although DVB resin has presented slightly better oil
removal efficiency than the MMA-DVB one, the results
showed that DVB resin can be industrially replaced by
MMA-DVB resin, due to the latter advantages: lower cost,
lower toxicity and easy regeneration, as indicated by the
kinetic and isothermstudies. | |
dc.format.extent | 399-406 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (13), 2019 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2009.05.044 | |
dc.relation.uri | https://doi.org/10.1016/S0043-1354(01)00070-7 | |
dc.relation.uri | https://doi.org/10.1351/PAC-CON-08-07-21 | |
dc.relation.uri | https://doi.org/10.1016/j.biortech.2010.03.079 | |
dc.relation.uri | https://doi.org/10.1002/0471440264.pst641 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2006.09.060 | |
dc.relation.uri | https://doi.org/10.1016/S0015-1882(13)70168-X | |
dc.relation.uri | https://doi.org/10.2118/183627-PA | |
dc.relation.uri | https://doi.org/10.1016/j.psep.2016.01.010 | |
dc.relation.uri | https://doi.org/10.1007/BF02493612 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2011.03.055 | |
dc.relation.uri | https://doi.org/10.1093/ijlct/cts049 | |
dc.relation.uri | https://doi.org/10.1016/j.polymer.2003.11.013 | |
dc.relation.uri | https://doi.org/10.1016/j.jcis.2008.09.006 | |
dc.relation.uri | https://doi.org/10.1016/j.chroma.2005.04.010 | |
dc.relation.uri | https://doi.org/10.1016/0021-9673(94)00766-3 | |
dc.relation.uri | https://doi.org/10.1016/S0021-9673(96)00710-8 | |
dc.relation.uri | https://doi.org/10.1016/S0014-3057(97)00099-2 | |
dc.relation.uri | https://doi.org/10.1021/ie8012242 | |
dc.relation.uri | https://doi.org/10.1016/j.seppur.2008.06.002 | |
dc.relation.uri | https://doi.org/10.1016/j.seppur.2013.07.041 | |
dc.relation.uri | https://doi.org/10.4322/polimeros.2013.048 | |
dc.relation.uri | https://doi.org/10.1016/j.jenvman.2015.04.025 | |
dc.relation.uri | https://doi.org/10.1590/S0104-14282004000300017 | |
dc.relation.uri | https://doi.org/10.1590/S0104-14282006000300012 | |
dc.relation.uri | https://doi.org/10.1080/10934529.2016.1159872 | |
dc.relation.uri | https://doi.org/10.1007/978-1-4615-2902-6_9 | |
dc.relation.uri | https://doi.org/10.1080/09593331708616362 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2012.03.053 | |
dc.relation.uri | https://doi.org/10.1002/app.24702 | |
dc.relation.uri | https://doi.org/10.1016/j.reactfunctpolym.2005.10.024 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2007.03.061 | |
dc.relation.uri | https://doi.org/10.1590/S0100-40422004000500015 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2014.07.071 | |
dc.relation.uri | https://doi.org/10.1016/j.jcis.2004.03.048 | |
dc.relation.uri | https://doi.org/10.1007/s10450-013-9529-0 | |
dc.subject | оброблення нафтовмісної води | |
dc.subject | адсорбція | |
dc.subject | пористі полімерні смоли | |
dc.subject | ізотерма | |
dc.subject | кінетична модель | |
dc.subject | oily water treatment | |
dc.subject | adsorption | |
dc.subject | porous polymer resins | |
dc.subject | isotherm model | |
dc.subject | kinetic model | |
dc.title | Removal of Petroleum from Aqueous Systems by Poly(divinylbenzene) and Poly(methyl methacrylate-divinylbenzene) Resins: Isothermal and Kinetic Studies | |
dc.title.alternative | Видалення нафти з водних систем полідивінілбензеновими та поліметилметакрилат-дивінілбензеновими смолами: ізотермальні та кінетичні дослідження | |
dc.type | Article | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2019 | |
dc.rights.holder | © Silva C., Rocha P., Aversa T., Lucas E., 2019 | |
dc.contributor.affiliation | Universidade Federal do Rio de Janeiro | |
dc.contributor.affiliation | Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ) | |
dc.format.pages | 8 | |
dc.identifier.citationen | Removal of Petroleum from Aqueous Systems by Poly(divinylbenzene) and Poly(methyl methacrylate-divinylbenzene) Resins: Isothermal and Kinetic Studies / Carla Silva, Paulo Rocha, Thiago Aversa, Elizabete Lucas // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 399–406. | |
dc.relation.references | 1. StephensonM.: Soc. Pet. Eng., 1992, 44, 548. | |
dc.relation.references | 2. Fakhru’l-Razia A., Pendashteha A., Abdullaha L. et al.: J. Hazard. Mat., 2009, 170, 530. https://doi.org/10.1016/j.jhazmat.2009.05.044 | |
dc.relation.references | 3. McCormack P., Jones P., HetheridgeM., Rowland S.:Wat. Res., 2001, 35, 3567. https://doi.org/10.1016/S0043-1354(01)00070-7 | |
dc.relation.references | 4. Lucas E., Mansur C., Spinelli L., Queirós Y.: Pure Appl. Chem., 2009, 81, 473. https://doi.org/10.1351/PAC-CON-08-07-21 | |
dc.relation.references | 5. Srinivasan A., Viraraghavan T.: Bioresour. Technol., 2010, 101, 6594. https://doi.org/10.1016/j.biortech.2010.03.079 | |
dc.relation.references | 6. Lucas E., Spinelli L., Khalil C.: Polymers Applications in Petroleum Production [in:]Mark H. (Ed.), Encyclopedia of Polymer Science and Technology. JohnWiley & Sons, Inc., 2015. https://doi.org/10.1002/0471440264.pst641 | |
dc.relation.references | 7. Rajakovic V., Aleksic G., RadeticM., Rajakovic L.: J. Hazard. Mat., 2007, 143, 494. https://doi.org/10.1016/j.jhazmat.2006.09.060 | |
dc.relation.references | 8. Barrufet M., Burnett D.,Mareth D.: SPE Annual Techn. Conf. and Exhib., Dallas 2005, 9. | |
dc.relation.references | 9. Tao F., Hobbs R., Sides J. et al.: SPE/EPA Exploration and Production Environmental Conference, San Antonio, 1993, 3. | |
dc.relation.references | 10. Souza A., Furtado C.: Bol. Tec. Prod. Petrol. Rio de Janeiro, 2006, 1, 215. | |
dc.relation.references | 11. Robinson D.: Filtration + Separation, 2013, 50, 38. https://doi.org/10.1016/S0015-1882(13)70168-X | |
dc.relation.references | 12. BataeeM., Irawan S., Ridha S. et al.: SPE Journal, 2017, 22, 1. https://doi.org/10.2118/183627-PA | |
dc.relation.references | 13. CONAMA (Conselho Nacional doMeio Ambiente) – Resolution number 393, 2007. | |
dc.relation.references | 14. Den BroekW., Plat R., Der ZandeM.: SPE Int. Oil and Gas Conf. and Exhib. in China, Beijing 1998. | |
dc.relation.references | 15. Munirasu S., HaijaM., Banat F.: Proc. Saf. Environ. Prot., 2016, 100, 183. https://doi.org/10.1016/j.psep.2016.01.010 | |
dc.relation.references | 16. Masqué N., GaliàM., Borrull F.: Chromatographia, 1999, 50, 21. https://doi.org/10.1007/BF02493612 | |
dc.relation.references | 17. Sokker H., El-Sawyb N., HassanM., El-Anadoul B.: J. Hazard. Mat., 2011, 190, 359. https://doi.org/10.1016/j.jhazmat.2011.03.055 | |
dc.relation.references | 18. Okiel K., El-SayedM., El-KadyM.: Egypt. J. Pet., 2011, 20, 9. | |
dc.relation.references | 19. Igunnu E., Chen G.: Int. J. Low Carbon Technol., 2014, 9, 157. https://doi.org/10.1093/ijlct/cts049 | |
dc.relation.references | 20. Li H., Jiao Y., XuM. et al.: Polymer, 2004, 45, 181. https://doi.org/10.1016/j.polymer.2003.11.013 | |
dc.relation.references | 21. Huang J., Huang K., Wang A., Yang Q.: J. Colloid Interf. Sci., 2008, 327, 302. https://doi.org/10.1016/j.jcis.2008.09.006 | |
dc.relation.references | 22. Fontanals N., GaliáM., Cormack P. et al.: J. Chromatogr. A, 2005, 1075, 51. https://doi.org/10.1016/j.chroma.2005.04.010 | |
dc.relation.references | 23. Dumont P., Fritz J.: J. Chromatogr. A, 1995, 691, 123. https://doi.org/10.1016/0021-9673(94)00766-3 | |
dc.relation.references | 24. Nash D., McCreath G., Chase H.: J. Chromatogr. A, 1997, 758, 53. https://doi.org/10.1016/S0021-9673(96)00710-8 | |
dc.relation.references | 25. Iayadene F., Guettaf H., Bencheikh Z. et al.: Eur. Polym. J., 1998, 34, 219. https://doi.org/10.1016/S0014-3057(97)00099-2 | |
dc.relation.references | 26. Bouvier E., Meirowitz R., McDonald P.: Pat. US 6254780. Publ. Jul. 3, 2001. | |
dc.relation.references | 27. Zhou Y., Chen L., Hu X., Lu J.: Ind. Eng. Chem. Res., 2009, 48, 1660. https://doi.org/10.1021/ie8012242 | |
dc.relation.references | 28. Zhou Y., Tang X., Xiao-Men H. et al.: Sep. Pur. Technol., 2008, 63, 400. https://doi.org/10.1016/j.seppur.2008.06.002 | |
dc.relation.references | 29. Kundu P., Mishra I.: Sep. Pur. Technol., 2013, 118, 519. https://doi.org/10.1016/j.seppur.2013.07.041 | |
dc.relation.references | 30. ClarisseM., Queirós Y., Barbosa C. et al.: Chem. Chem. Technol., 2012, 6, 145. | |
dc.relation.references | 31. Aversa T., Queirós Y., Lucas E., Louvisse A.: Polímeros, 2014, 24, 45. https://doi.org/10.4322/polimeros.2013.048 | |
dc.relation.references | 32. Silva C., Rocha Q., Rocha P. et al.: J. Environ. Manag., 2015, 57, 205. https://doi.org/10.1016/j.jenvman.2015.04.025 | |
dc.relation.references | 33. Cardoso A., Lucas E., Barbosa C.: Polímeros, 2004, 14, 201. https://doi.org/10.1590/S0104-14282004000300017 | |
dc.relation.references | 34. Queirós Y., ClarisseM., Oliveira R. et al.: Polímeros, 2006, 16, 224. https://doi.org/10.1590/S0104-14282006000300012 | |
dc.relation.references | 35. Aversa T., Silva C., Rocha Q., Lucas E.: J. Environ. Sci. Health A, 2016, 51, 634. https://doi.org/10.1080/10934529.2016.1159872 | |
dc.relation.references | 36. Tibbetts P., Buchanan I., Gawel L., Large R.: A Comprehensive Determination of ProducedWater Composition [in:] Ray J., Engelhardt F. (Eds.), ProducedWater: Technological/Environmental Issues and Solutions. Springer Science & BusinessMedia, New York 1992. https://doi.org/10.1007/978-1-4615-2902-6_9 | |
dc.relation.references | 37. Galkin A.: J. Anal. Chem., 2004, 50, 1078. | |
dc.relation.references | 38. Rendell D.: Fluorescense and Phosforescence. JohnWiley& Sons, Bristol 1987. | |
dc.relation.references | 39. Adamson A.: Physical Chemistry of Surfaces. John Wiley& Sons, California 1990. | |
dc.relation.references | 40. Ho Y., McKay G.: Chem. Eng. Res. Design, 1998, 76, 332. | |
dc.relation.references | 41. Sho Y., Wase J. A. D., Forster F. C.: Environ. Technol., 1996, 17, 71. https://doi.org/10.1080/09593331708616362 | |
dc.relation.references | 42. Smith F., Hashemi J.: Fundamentos de Engenharia e Ciência dos Materiais.McGraw Hill Brasil, Porto Alegre 2012. | |
dc.relation.references | 43. Huang J., Jin X., Mao J. et al.: J. Hazard. Mat., 2012, 217, 406. https://doi.org/10.1016/j.jhazmat.2012.03.053 | |
dc.relation.references | 44. Cheng S., Tang H., Yan H.: J. Appl. Polym. Sci., 2006, 102, 4652. https://doi.org/10.1002/app.24702 | |
dc.relation.references | 45. Drechny D., Trochimczuk A.: React. Funct. Polym., 2006, 66, 323. https://doi.org/10.1016/j.reactfunctpolym.2005.10.024 | |
dc.relation.references | 46. Kennedy L., Vijaya J., Sekaran G., Kayalvizhi K.: J. Hazard. Mat., 2007, 149, 134. https://doi.org/10.1016/j.jhazmat.2007.03.061 | |
dc.relation.references | 47. Teixeira V., Coutinho F., Gomes A.: Quim. Nova, 2004, 27, 754. https://doi.org/10.1590/S0100-40422004000500015 | |
dc.relation.references | 48. Guimarães D., Leão V.: J. Hazard. Mat., 2014, 280, 209. https://doi.org/10.1016/j.jhazmat.2014.07.071 | |
dc.relation.references | 49. Azizian S.: J. Colloid Interf. Sci., 2004, 276, 47. https://doi.org/10.1016/j.jcis.2004.03.048 | |
dc.relation.references | 50. Plazinski W., Dziuba J., Rudzinski W.: Adsorption, 2013, 19, 1055. https://doi.org/10.1007/s10450-013-9529-0 | |
dc.relation.referencesen | 1. StephensonM., Soc. Pet. Eng., 1992, 44, 548. | |
dc.relation.referencesen | 2. Fakhru’l-Razia A., Pendashteha A., Abdullaha L. et al., J. Hazard. Mat., 2009, 170, 530. https://doi.org/10.1016/j.jhazmat.2009.05.044 | |
dc.relation.referencesen | 3. McCormack P., Jones P., HetheridgeM., Rowland S.:Wat. Res., 2001, 35, 3567. https://doi.org/10.1016/S0043-1354(01)00070-7 | |
dc.relation.referencesen | 4. Lucas E., Mansur C., Spinelli L., Queirós Y., Pure Appl. Chem., 2009, 81, 473. https://doi.org/10.1351/PAC-CON-08-07-21 | |
dc.relation.referencesen | 5. Srinivasan A., Viraraghavan T., Bioresour. Technol., 2010, 101, 6594. https://doi.org/10.1016/j.biortech.2010.03.079 | |
dc.relation.referencesen | 6. Lucas E., Spinelli L., Khalil C., Polymers Applications in Petroleum Production [in:]Mark H. (Ed.), Encyclopedia of Polymer Science and Technology. JohnWiley & Sons, Inc., 2015. https://doi.org/10.1002/0471440264.pst641 | |
dc.relation.referencesen | 7. Rajakovic V., Aleksic G., RadeticM., Rajakovic L., J. Hazard. Mat., 2007, 143, 494. https://doi.org/10.1016/j.jhazmat.2006.09.060 | |
dc.relation.referencesen | 8. Barrufet M., Burnett D.,Mareth D., SPE Annual Techn. Conf. and Exhib., Dallas 2005, 9. | |
dc.relation.referencesen | 9. Tao F., Hobbs R., Sides J. et al., SPE/EPA Exploration and Production Environmental Conference, San Antonio, 1993, 3. | |
dc.relation.referencesen | 10. Souza A., Furtado C., Bol. Tec. Prod. Petrol. Rio de Janeiro, 2006, 1, 215. | |
dc.relation.referencesen | 11. Robinson D., Filtration + Separation, 2013, 50, 38. https://doi.org/10.1016/S0015-1882(13)70168-X | |
dc.relation.referencesen | 12. BataeeM., Irawan S., Ridha S. et al., SPE Journal, 2017, 22, 1. https://doi.org/10.2118/183627-PA | |
dc.relation.referencesen | 13. CONAMA (Conselho Nacional doMeio Ambiente) – Resolution number 393, 2007. | |
dc.relation.referencesen | 14. Den BroekW., Plat R., Der ZandeM., SPE Int. Oil and Gas Conf. and Exhib. in China, Beijing 1998. | |
dc.relation.referencesen | 15. Munirasu S., HaijaM., Banat F., Proc. Saf. Environ. Prot., 2016, 100, 183. https://doi.org/10.1016/j.psep.2016.01.010 | |
dc.relation.referencesen | 16. Masqué N., GaliàM., Borrull F., Chromatographia, 1999, 50, 21. https://doi.org/10.1007/BF02493612 | |
dc.relation.referencesen | 17. Sokker H., El-Sawyb N., HassanM., El-Anadoul B., J. Hazard. Mat., 2011, 190, 359. https://doi.org/10.1016/j.jhazmat.2011.03.055 | |
dc.relation.referencesen | 18. Okiel K., El-SayedM., El-KadyM., Egypt. J. Pet., 2011, 20, 9. | |
dc.relation.referencesen | 19. Igunnu E., Chen G., Int. J. Low Carbon Technol., 2014, 9, 157. https://doi.org/10.1093/ijlct/cts049 | |
dc.relation.referencesen | 20. Li H., Jiao Y., XuM. et al., Polymer, 2004, 45, 181. https://doi.org/10.1016/j.polymer.2003.11.013 | |
dc.relation.referencesen | 21. Huang J., Huang K., Wang A., Yang Q., J. Colloid Interf. Sci., 2008, 327, 302. https://doi.org/10.1016/j.jcis.2008.09.006 | |
dc.relation.referencesen | 22. Fontanals N., GaliáM., Cormack P. et al., J. Chromatogr. A, 2005, 1075, 51. https://doi.org/10.1016/j.chroma.2005.04.010 | |
dc.relation.referencesen | 23. Dumont P., Fritz J., J. Chromatogr. A, 1995, 691, 123. https://doi.org/10.1016/0021-9673(94)00766-3 | |
dc.relation.referencesen | 24. Nash D., McCreath G., Chase H., J. Chromatogr. A, 1997, 758, 53. https://doi.org/10.1016/S0021-9673(96)00710-8 | |
dc.relation.referencesen | 25. Iayadene F., Guettaf H., Bencheikh Z. et al., Eur. Polym. J., 1998, 34, 219. https://doi.org/10.1016/S0014-3057(97)00099-2 | |
dc.relation.referencesen | 26. Bouvier E., Meirowitz R., McDonald P., Pat. US 6254780. Publ. Jul. 3, 2001. | |
dc.relation.referencesen | 27. Zhou Y., Chen L., Hu X., Lu J., Ind. Eng. Chem. Res., 2009, 48, 1660. https://doi.org/10.1021/ie8012242 | |
dc.relation.referencesen | 28. Zhou Y., Tang X., Xiao-Men H. et al., Sep. Pur. Technol., 2008, 63, 400. https://doi.org/10.1016/j.seppur.2008.06.002 | |
dc.relation.referencesen | 29. Kundu P., Mishra I., Sep. Pur. Technol., 2013, 118, 519. https://doi.org/10.1016/j.seppur.2013.07.041 | |
dc.relation.referencesen | 30. ClarisseM., Queirós Y., Barbosa C. et al., Chem. Chem. Technol., 2012, 6, 145. | |
dc.relation.referencesen | 31. Aversa T., Queirós Y., Lucas E., Louvisse A., Polímeros, 2014, 24, 45. https://doi.org/10.4322/polimeros.2013.048 | |
dc.relation.referencesen | 32. Silva C., Rocha Q., Rocha P. et al., J. Environ. Manag., 2015, 57, 205. https://doi.org/10.1016/j.jenvman.2015.04.025 | |
dc.relation.referencesen | 33. Cardoso A., Lucas E., Barbosa C., Polímeros, 2004, 14, 201. https://doi.org/10.1590/S0104-14282004000300017 | |
dc.relation.referencesen | 34. Queirós Y., ClarisseM., Oliveira R. et al., Polímeros, 2006, 16, 224. https://doi.org/10.1590/S0104-14282006000300012 | |
dc.relation.referencesen | 35. Aversa T., Silva C., Rocha Q., Lucas E., J. Environ. Sci. Health A, 2016, 51, 634. https://doi.org/10.1080/10934529.2016.1159872 | |
dc.relation.referencesen | 36. Tibbetts P., Buchanan I., Gawel L., Large R., A Comprehensive Determination of ProducedWater Composition [in:] Ray J., Engelhardt F. (Eds.), ProducedWater: Technological/Environmental Issues and Solutions. Springer Science & BusinessMedia, New York 1992. https://doi.org/10.1007/978-1-4615-2902-6_9 | |
dc.relation.referencesen | 37. Galkin A., J. Anal. Chem., 2004, 50, 1078. | |
dc.relation.referencesen | 38. Rendell D., Fluorescense and Phosforescence. JohnWiley& Sons, Bristol 1987. | |
dc.relation.referencesen | 39. Adamson A., Physical Chemistry of Surfaces. John Wiley& Sons, California 1990. | |
dc.relation.referencesen | 40. Ho Y., McKay G., Chem. Eng. Res. Design, 1998, 76, 332. | |
dc.relation.referencesen | 41. Sho Y., Wase J. A. D., Forster F. C., Environ. Technol., 1996, 17, 71. https://doi.org/10.1080/09593331708616362 | |
dc.relation.referencesen | 42. Smith F., Hashemi J., Fundamentos de Engenharia e Ciência dos Materiais.McGraw Hill Brasil, Porto Alegre 2012. | |
dc.relation.referencesen | 43. Huang J., Jin X., Mao J. et al., J. Hazard. Mat., 2012, 217, 406. https://doi.org/10.1016/j.jhazmat.2012.03.053 | |
dc.relation.referencesen | 44. Cheng S., Tang H., Yan H., J. Appl. Polym. Sci., 2006, 102, 4652. https://doi.org/10.1002/app.24702 | |
dc.relation.referencesen | 45. Drechny D., Trochimczuk A., React. Funct. Polym., 2006, 66, 323. https://doi.org/10.1016/j.reactfunctpolym.2005.10.024 | |
dc.relation.referencesen | 46. Kennedy L., Vijaya J., Sekaran G., Kayalvizhi K., J. Hazard. Mat., 2007, 149, 134. https://doi.org/10.1016/j.jhazmat.2007.03.061 | |
dc.relation.referencesen | 47. Teixeira V., Coutinho F., Gomes A., Quim. Nova, 2004, 27, 754. https://doi.org/10.1590/S0100-40422004000500015 | |
dc.relation.referencesen | 48. Guimarães D., Leão V., J. Hazard. Mat., 2014, 280, 209. https://doi.org/10.1016/j.jhazmat.2014.07.071 | |
dc.relation.referencesen | 49. Azizian S., J. Colloid Interf. Sci., 2004, 276, 47. https://doi.org/10.1016/j.jcis.2004.03.048 | |
dc.relation.referencesen | 50. Plazinski W., Dziuba J., Rudzinski W., Adsorption, 2013, 19, 1055. https://doi.org/10.1007/s10450-013-9529-0 | |
dc.citation.issue | 3 | |
dc.citation.spage | 399 | |
dc.citation.epage | 406 | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
Appears in Collections: | Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 3
|