Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46484
Title: Kinetic Modeling Studies of Enzymatic Purification of Glucomannan
Other Titles: Кінетичні модельні дослідження ензиматичного очищення глюкоманнана
Authors: Wardhani, Dyah Hesti
Kumoro, Andri Cahyo
Hakiim, Azafilmi
Aryanti, Nita
Cahyono, Heri
Affiliation: University of Diponegoro
Bibliographic description (Ukraine): Kinetic Modeling Studies of Enzymatic Purification of Glucomannan / Dyah Hesti Wardhani, Andri Cahyo Kumoro, Azafilmi Hakiim, Nita Aryanti, Heri Cahyono // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 384–390.
Bibliographic description (International): Kinetic Modeling Studies of Enzymatic Purification of Glucomannan / Dyah Hesti Wardhani, Andri Cahyo Kumoro, Azafilmi Hakiim, Nita Aryanti, Heri Cahyono // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 384–390.
Is part of: Chemistry & Chemical Technology, 3 (13), 2019
Issue: 3
Issue Date: 28-Feb-2019
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
Keywords: α-амілаза
Amorphophallus oncophyllus
глюкоманнан
гідроліз
очищення
крохмаль
α-amylase
Amorphophallus oncophyllus
glucomannan
hydrolysis
purification
starch
Number of pages: 7
Page range: 384-390
Start page: 384
End page: 390
Abstract: Вивчено процес очищення глюкоманнана гідролізом крохмалю – основного забруднювача. Встановлено, що гідролізом усувається 88,7% крохмалю. Одержано най- вищий вміст глюкоманнану 73,35 %. Проведено порівняльні до- слідження ІЧ-спектрів дослідженого і комерційного глюко- маннана. За допомогою моделі Міхаеліса-Ментена описано кінетику ензиматичного гідролізу.
Purification of glucomannan by hydrolising starch – the main contaminant – was studied. Hydrolysis removed 88.7 % of starch. The highest glucomannan сontent was found to be 73.35 %. The sample showed the comparable infrared spectra to those of the commercial glucomannan. The kinetics of enzymatic hydrolysis was evaluated using the Michaelis-Menten model.
URI: https://ena.lpnu.ua/handle/ntb/46484
Copyright owner: © Національний університет „Львівська політехніка“, 2019
© Wardhani D., Kumoro A., Hakiim A., Aryanti N., Cahyono H., 2019
URL for reference material: https://doi.org/10.14393/BJ-v35nla2019-41766
https://doi.org/10.1016/j.carbpol.2014.06.019
https://doi.org/10.1016/j.carbpol.2010.11.021
https://doi.org/10.1016/j.carbpol.2011.10.053
https://doi.org/10.1016/j.foodchem.2014.02.093
https://doi.org/10.1016/j.cofs.2015.12.002
https://doi.org/10.1089/ind.2016.0011
https://doi.org/10.1016/j.carbpol.2012.06.039
https://doi.org/10.1016/S0008-6215(02)00107-6
https://doi.org/10.1016/j.carbpol.2013.06.002
https://doi.org/10.1016/j.foodhyd.2015.09.018
https://doi.org/10.1016/j.foodhyd.2015.02.036
https://doi.org/10.1016/j.enzmictec.2005.10.012
https://doi.org/10.1016/j.lwt.2014.05.034
https://doi.org/10.1016/j.indcrop.2013.10.025
https://doi.org/10.1016/j.fuel.2008.12.019
https://doi.org/10.1016/j.jfoodeng.2015.12.010
https://doi.org/10.1002/star.19920441106
References (Ukraine): 1. Wardhani D., Vazquez J., Ramdani D., et al.: Biosci. J., 2019, 35, 277. https://doi.org/10.14393/BJ-v35nla2019-41766.
2. Harmayani E., Aprilia V., Marsono Y.: Carbohydr. Polym., 2014, 112, 475. https://doi.org/10.1016/j.carbpol.2014.06.019
3. An N., Thien D., Dong N. et al.: Carbohydr. Polym., 2011, 84, 64. https://doi.org/10.1016/j.carbpol.2010.11.021
4. ChuaM., Baldwin T., Hocking T., Chan K.: Carbohydr. Polym., 2012, 87, 2202. https://doi.org/10.1016/j.carbpol.2011.10.053
5. Hakiim A..:MSc Thesis, University of Diponegoro, Indonesia 2015.
6. Ohashi S., Shelso G., Moirano A., Drinkwater W.: Pat. US 6162906A, Publ. Dec. 19, 2000.
7. Xu W., Wang S., Ye T. et al.: Food Chem., 2014, 158, 171. https://doi.org/10.1016/j.foodchem.2014.02.093
8. Patel A., Singhania R., Pandey A.: Curr. Opin. Food Sci., 2016, 7, 64. https://doi.org/10.1016/j.cofs.2015.12.002
9. Vincent S., Diane S., Lori G. et al.: Ind. Biotechnol., 2016, 12, 295. https://doi.org/10.1089/ind.2016.0011
10. AOAC 2005. Official of Analysis of the Association of Official Analytical Chemistry. Washington: AOAC Inc.
11. Sadasivam S., Manickam A.: Biochemical Methods, 3rd edn. New Age International Pvt Ltd Publishers. New Delhi 2008.
12. Muntean E.: Bulletin UASVM Agricult., 2011, 68, 344.
13. Simsek S., El S.: Carbohydr. Polym., 2012, 90, 1204. https://doi.org/10.1016/j.carbpol.2012.06.039
14. Yook C., Robyt J.: Carbohydr. Res., 2002, 337, 1113. https://doi.org/10.1016/S0008-6215(02)00107-6
15. Kolusheva T., Marinova A.: J. Univ. Chem. Technol. Metall., 2007, 42, 93.
16. Hera E., GomezM., Rosell C.: Carbohydr. Polym., 2013, 98, 421. https://doi.org/10.1016/j.carbpol.2013.06.002
17. Zhang H., Yin L., Zheng Y., Shen J.: Food Hydrocolloid., 2016, 54, 23. https://doi.org/10.1016/j.foodhyd.2015.09.018
18. Zheng Y., Zhang H., Yao C. et al.: Food Hydrocolloid., 2015, 48, 312. https://doi.org/10.1016/j.foodhyd.2015.02.036
19. Nurjanah Z.: BSc thesis, Bogor Agricultural Institute, Indonesia 2010.
20. Lopez C., Torrado A., Fucinos P. et al.: Enzyme Microb. Technol. 2006, 39, 252. https://doi.org/10.1016/j.enzmictec.2005.10.012
21. Rodriguez S., Bernik D.: LWT-Food Sci. Technol., 2014, 59, 635. https://doi.org/10.1016/j.lwt.2014.05.034
22. Khawla B., SamehM., Imen G. et al.: Ind. Crops Prod., 2014, 52,144. https://doi.org/10.1016/j.indcrop.2013.10.025
23. Nikolic´ S., Mojovic´ L., RakinM., Pejin D.: Fuel, 2011, 88, 1602. https://doi.org/10.1016/j.fuel.2008.12.019
24. Wu J., Zhong Q.: J. Food Eng., 2016, 175, 104. https://doi.org/10.1016/j.jfoodeng.2015.12.010
25. Mulyono E.: Centre of Research and Development of Agricultural Post Harvest. Indonesia: Program of application research intensive, 2010.
26. Widjanarko S., Nugroho A., Estiasih T.: Afr. J. Food Sci., 2011, 5, 12.
27. Franco C., Ciacco C.: Starch, 1992, 44, 422. https://doi.org/10.1002/star.19920441106
References (International): 1. Wardhani D., Vazquez J., Ramdani D., et al., Biosci. J., 2019, 35, 277. https://doi.org/10.14393/BJ-v35nla2019-41766.
2. Harmayani E., Aprilia V., Marsono Y., Carbohydr. Polym., 2014, 112, 475. https://doi.org/10.1016/j.carbpol.2014.06.019
3. An N., Thien D., Dong N. et al., Carbohydr. Polym., 2011, 84, 64. https://doi.org/10.1016/j.carbpol.2010.11.021
4. ChuaM., Baldwin T., Hocking T., Chan K., Carbohydr. Polym., 2012, 87, 2202. https://doi.org/10.1016/j.carbpol.2011.10.053
5. Hakiim A..:MSc Thesis, University of Diponegoro, Indonesia 2015.
6. Ohashi S., Shelso G., Moirano A., Drinkwater W., Pat. US 6162906A, Publ. Dec. 19, 2000.
7. Xu W., Wang S., Ye T. et al., Food Chem., 2014, 158, 171. https://doi.org/10.1016/j.foodchem.2014.02.093
8. Patel A., Singhania R., Pandey A., Curr. Opin. Food Sci., 2016, 7, 64. https://doi.org/10.1016/j.cofs.2015.12.002
9. Vincent S., Diane S., Lori G. et al., Ind. Biotechnol., 2016, 12, 295. https://doi.org/10.1089/ind.2016.0011
10. AOAC 2005. Official of Analysis of the Association of Official Analytical Chemistry. Washington: AOAC Inc.
11. Sadasivam S., Manickam A., Biochemical Methods, 3rd edn. New Age International Pvt Ltd Publishers. New Delhi 2008.
12. Muntean E., Bulletin UASVM Agricult., 2011, 68, 344.
13. Simsek S., El S., Carbohydr. Polym., 2012, 90, 1204. https://doi.org/10.1016/j.carbpol.2012.06.039
14. Yook C., Robyt J., Carbohydr. Res., 2002, 337, 1113. https://doi.org/10.1016/S0008-6215(02)00107-6
15. Kolusheva T., Marinova A., J. Univ. Chem. Technol. Metall., 2007, 42, 93.
16. Hera E., GomezM., Rosell C., Carbohydr. Polym., 2013, 98, 421. https://doi.org/10.1016/j.carbpol.2013.06.002
17. Zhang H., Yin L., Zheng Y., Shen J., Food Hydrocolloid., 2016, 54, 23. https://doi.org/10.1016/j.foodhyd.2015.09.018
18. Zheng Y., Zhang H., Yao C. et al., Food Hydrocolloid., 2015, 48, 312. https://doi.org/10.1016/j.foodhyd.2015.02.036
19. Nurjanah Z., BSc thesis, Bogor Agricultural Institute, Indonesia 2010.
20. Lopez C., Torrado A., Fucinos P. et al., Enzyme Microb. Technol. 2006, 39, 252. https://doi.org/10.1016/j.enzmictec.2005.10.012
21. Rodriguez S., Bernik D., LWT-Food Sci. Technol., 2014, 59, 635. https://doi.org/10.1016/j.lwt.2014.05.034
22. Khawla B., SamehM., Imen G. et al., Ind. Crops Prod., 2014, 52,144. https://doi.org/10.1016/j.indcrop.2013.10.025
23. Nikolic´ S., Mojovic´ L., RakinM., Pejin D., Fuel, 2011, 88, 1602. https://doi.org/10.1016/j.fuel.2008.12.019
24. Wu J., Zhong Q., J. Food Eng., 2016, 175, 104. https://doi.org/10.1016/j.jfoodeng.2015.12.010
25. Mulyono E., Centre of Research and Development of Agricultural Post Harvest. Indonesia: Program of application research intensive, 2010.
26. Widjanarko S., Nugroho A., Estiasih T., Afr. J. Food Sci., 2011, 5, 12.
27. Franco C., Ciacco C., Starch, 1992, 44, 422. https://doi.org/10.1002/star.19920441106
Content type: Article
Appears in Collections:Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 3

Files in This Item:
File Description SizeFormat 
2019v13n3_Wardhani_D_H-Kinetic_Modeling_Studies_384-390.pdf738.32 kBAdobe PDFView/Open
2019v13n3_Wardhani_D_H-Kinetic_Modeling_Studies_384-390__COVER.png541.2 kBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.