https://oldena.lpnu.ua/handle/ntb/46484
Title: | Kinetic Modeling Studies of Enzymatic Purification of Glucomannan |
Other Titles: | Кінетичні модельні дослідження ензиматичного очищення глюкоманнана |
Authors: | Wardhani, Dyah Hesti Kumoro, Andri Cahyo Hakiim, Azafilmi Aryanti, Nita Cahyono, Heri |
Affiliation: | University of Diponegoro |
Bibliographic description (Ukraine): | Kinetic Modeling Studies of Enzymatic Purification of Glucomannan / Dyah Hesti Wardhani, Andri Cahyo Kumoro, Azafilmi Hakiim, Nita Aryanti, Heri Cahyono // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 384–390. |
Bibliographic description (International): | Kinetic Modeling Studies of Enzymatic Purification of Glucomannan / Dyah Hesti Wardhani, Andri Cahyo Kumoro, Azafilmi Hakiim, Nita Aryanti, Heri Cahyono // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 384–390. |
Is part of: | Chemistry & Chemical Technology, 3 (13), 2019 |
Issue: | 3 |
Issue Date: | 28-Feb-2019 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
Keywords: | α-амілаза Amorphophallus oncophyllus глюкоманнан гідроліз очищення крохмаль α-amylase Amorphophallus oncophyllus glucomannan hydrolysis purification starch |
Number of pages: | 7 |
Page range: | 384-390 |
Start page: | 384 |
End page: | 390 |
Abstract: | Вивчено процес очищення глюкоманнана
гідролізом крохмалю – основного забруднювача. Встановлено,
що гідролізом усувається 88,7% крохмалю. Одержано най-
вищий вміст глюкоманнану 73,35 %. Проведено порівняльні до-
слідження ІЧ-спектрів дослідженого і комерційного глюко-
маннана. За допомогою моделі Міхаеліса-Ментена описано
кінетику ензиматичного гідролізу. Purification of glucomannan by hydrolising starch – the main contaminant – was studied. Hydrolysis removed 88.7 % of starch. The highest glucomannan сontent was found to be 73.35 %. The sample showed the comparable infrared spectra to those of the commercial glucomannan. The kinetics of enzymatic hydrolysis was evaluated using the Michaelis-Menten model. |
URI: | https://ena.lpnu.ua/handle/ntb/46484 |
Copyright owner: | © Національний університет „Львівська політехніка“, 2019 © Wardhani D., Kumoro A., Hakiim A., Aryanti N., Cahyono H., 2019 |
URL for reference material: | https://doi.org/10.14393/BJ-v35nla2019-41766 https://doi.org/10.1016/j.carbpol.2014.06.019 https://doi.org/10.1016/j.carbpol.2010.11.021 https://doi.org/10.1016/j.carbpol.2011.10.053 https://doi.org/10.1016/j.foodchem.2014.02.093 https://doi.org/10.1016/j.cofs.2015.12.002 https://doi.org/10.1089/ind.2016.0011 https://doi.org/10.1016/j.carbpol.2012.06.039 https://doi.org/10.1016/S0008-6215(02)00107-6 https://doi.org/10.1016/j.carbpol.2013.06.002 https://doi.org/10.1016/j.foodhyd.2015.09.018 https://doi.org/10.1016/j.foodhyd.2015.02.036 https://doi.org/10.1016/j.enzmictec.2005.10.012 https://doi.org/10.1016/j.lwt.2014.05.034 https://doi.org/10.1016/j.indcrop.2013.10.025 https://doi.org/10.1016/j.fuel.2008.12.019 https://doi.org/10.1016/j.jfoodeng.2015.12.010 https://doi.org/10.1002/star.19920441106 |
References (Ukraine): | 1. Wardhani D., Vazquez J., Ramdani D., et al.: Biosci. J., 2019, 35, 277. https://doi.org/10.14393/BJ-v35nla2019-41766. 2. Harmayani E., Aprilia V., Marsono Y.: Carbohydr. Polym., 2014, 112, 475. https://doi.org/10.1016/j.carbpol.2014.06.019 3. An N., Thien D., Dong N. et al.: Carbohydr. Polym., 2011, 84, 64. https://doi.org/10.1016/j.carbpol.2010.11.021 4. ChuaM., Baldwin T., Hocking T., Chan K.: Carbohydr. Polym., 2012, 87, 2202. https://doi.org/10.1016/j.carbpol.2011.10.053 5. Hakiim A..:MSc Thesis, University of Diponegoro, Indonesia 2015. 6. Ohashi S., Shelso G., Moirano A., Drinkwater W.: Pat. US 6162906A, Publ. Dec. 19, 2000. 7. Xu W., Wang S., Ye T. et al.: Food Chem., 2014, 158, 171. https://doi.org/10.1016/j.foodchem.2014.02.093 8. Patel A., Singhania R., Pandey A.: Curr. Opin. Food Sci., 2016, 7, 64. https://doi.org/10.1016/j.cofs.2015.12.002 9. Vincent S., Diane S., Lori G. et al.: Ind. Biotechnol., 2016, 12, 295. https://doi.org/10.1089/ind.2016.0011 10. AOAC 2005. Official of Analysis of the Association of Official Analytical Chemistry. Washington: AOAC Inc. 11. Sadasivam S., Manickam A.: Biochemical Methods, 3rd edn. New Age International Pvt Ltd Publishers. New Delhi 2008. 12. Muntean E.: Bulletin UASVM Agricult., 2011, 68, 344. 13. Simsek S., El S.: Carbohydr. Polym., 2012, 90, 1204. https://doi.org/10.1016/j.carbpol.2012.06.039 14. Yook C., Robyt J.: Carbohydr. Res., 2002, 337, 1113. https://doi.org/10.1016/S0008-6215(02)00107-6 15. Kolusheva T., Marinova A.: J. Univ. Chem. Technol. Metall., 2007, 42, 93. 16. Hera E., GomezM., Rosell C.: Carbohydr. Polym., 2013, 98, 421. https://doi.org/10.1016/j.carbpol.2013.06.002 17. Zhang H., Yin L., Zheng Y., Shen J.: Food Hydrocolloid., 2016, 54, 23. https://doi.org/10.1016/j.foodhyd.2015.09.018 18. Zheng Y., Zhang H., Yao C. et al.: Food Hydrocolloid., 2015, 48, 312. https://doi.org/10.1016/j.foodhyd.2015.02.036 19. Nurjanah Z.: BSc thesis, Bogor Agricultural Institute, Indonesia 2010. 20. Lopez C., Torrado A., Fucinos P. et al.: Enzyme Microb. Technol. 2006, 39, 252. https://doi.org/10.1016/j.enzmictec.2005.10.012 21. Rodriguez S., Bernik D.: LWT-Food Sci. Technol., 2014, 59, 635. https://doi.org/10.1016/j.lwt.2014.05.034 22. Khawla B., SamehM., Imen G. et al.: Ind. Crops Prod., 2014, 52,144. https://doi.org/10.1016/j.indcrop.2013.10.025 23. Nikolic´ S., Mojovic´ L., RakinM., Pejin D.: Fuel, 2011, 88, 1602. https://doi.org/10.1016/j.fuel.2008.12.019 24. Wu J., Zhong Q.: J. Food Eng., 2016, 175, 104. https://doi.org/10.1016/j.jfoodeng.2015.12.010 25. Mulyono E.: Centre of Research and Development of Agricultural Post Harvest. Indonesia: Program of application research intensive, 2010. 26. Widjanarko S., Nugroho A., Estiasih T.: Afr. J. Food Sci., 2011, 5, 12. 27. Franco C., Ciacco C.: Starch, 1992, 44, 422. https://doi.org/10.1002/star.19920441106 |
References (International): | 1. Wardhani D., Vazquez J., Ramdani D., et al., Biosci. J., 2019, 35, 277. https://doi.org/10.14393/BJ-v35nla2019-41766. 2. Harmayani E., Aprilia V., Marsono Y., Carbohydr. Polym., 2014, 112, 475. https://doi.org/10.1016/j.carbpol.2014.06.019 3. An N., Thien D., Dong N. et al., Carbohydr. Polym., 2011, 84, 64. https://doi.org/10.1016/j.carbpol.2010.11.021 4. ChuaM., Baldwin T., Hocking T., Chan K., Carbohydr. Polym., 2012, 87, 2202. https://doi.org/10.1016/j.carbpol.2011.10.053 5. Hakiim A..:MSc Thesis, University of Diponegoro, Indonesia 2015. 6. Ohashi S., Shelso G., Moirano A., Drinkwater W., Pat. US 6162906A, Publ. Dec. 19, 2000. 7. Xu W., Wang S., Ye T. et al., Food Chem., 2014, 158, 171. https://doi.org/10.1016/j.foodchem.2014.02.093 8. Patel A., Singhania R., Pandey A., Curr. Opin. Food Sci., 2016, 7, 64. https://doi.org/10.1016/j.cofs.2015.12.002 9. Vincent S., Diane S., Lori G. et al., Ind. Biotechnol., 2016, 12, 295. https://doi.org/10.1089/ind.2016.0011 10. AOAC 2005. Official of Analysis of the Association of Official Analytical Chemistry. Washington: AOAC Inc. 11. Sadasivam S., Manickam A., Biochemical Methods, 3rd edn. New Age International Pvt Ltd Publishers. New Delhi 2008. 12. Muntean E., Bulletin UASVM Agricult., 2011, 68, 344. 13. Simsek S., El S., Carbohydr. Polym., 2012, 90, 1204. https://doi.org/10.1016/j.carbpol.2012.06.039 14. Yook C., Robyt J., Carbohydr. Res., 2002, 337, 1113. https://doi.org/10.1016/S0008-6215(02)00107-6 15. Kolusheva T., Marinova A., J. Univ. Chem. Technol. Metall., 2007, 42, 93. 16. Hera E., GomezM., Rosell C., Carbohydr. Polym., 2013, 98, 421. https://doi.org/10.1016/j.carbpol.2013.06.002 17. Zhang H., Yin L., Zheng Y., Shen J., Food Hydrocolloid., 2016, 54, 23. https://doi.org/10.1016/j.foodhyd.2015.09.018 18. Zheng Y., Zhang H., Yao C. et al., Food Hydrocolloid., 2015, 48, 312. https://doi.org/10.1016/j.foodhyd.2015.02.036 19. Nurjanah Z., BSc thesis, Bogor Agricultural Institute, Indonesia 2010. 20. Lopez C., Torrado A., Fucinos P. et al., Enzyme Microb. Technol. 2006, 39, 252. https://doi.org/10.1016/j.enzmictec.2005.10.012 21. Rodriguez S., Bernik D., LWT-Food Sci. Technol., 2014, 59, 635. https://doi.org/10.1016/j.lwt.2014.05.034 22. Khawla B., SamehM., Imen G. et al., Ind. Crops Prod., 2014, 52,144. https://doi.org/10.1016/j.indcrop.2013.10.025 23. Nikolic´ S., Mojovic´ L., RakinM., Pejin D., Fuel, 2011, 88, 1602. https://doi.org/10.1016/j.fuel.2008.12.019 24. Wu J., Zhong Q., J. Food Eng., 2016, 175, 104. https://doi.org/10.1016/j.jfoodeng.2015.12.010 25. Mulyono E., Centre of Research and Development of Agricultural Post Harvest. Indonesia: Program of application research intensive, 2010. 26. Widjanarko S., Nugroho A., Estiasih T., Afr. J. Food Sci., 2011, 5, 12. 27. Franco C., Ciacco C., Starch, 1992, 44, 422. https://doi.org/10.1002/star.19920441106 |
Content type: | Article |
Appears in Collections: | Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 3 |
File | Description | Size | Format | |
---|---|---|---|---|
2019v13n3_Wardhani_D_H-Kinetic_Modeling_Studies_384-390.pdf | 738.32 kB | Adobe PDF | View/Open | |
2019v13n3_Wardhani_D_H-Kinetic_Modeling_Studies_384-390__COVER.png | 541.2 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.