Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://oldena.lpnu.ua/handle/ntb/46484
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWardhani, Dyah Hesti
dc.contributor.authorKumoro, Andri Cahyo
dc.contributor.authorHakiim, Azafilmi
dc.contributor.authorAryanti, Nita
dc.contributor.authorCahyono, Heri
dc.date.accessioned2020-03-02T13:09:25Z-
dc.date.available2020-03-02T13:09:25Z-
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.identifier.citationKinetic Modeling Studies of Enzymatic Purification of Glucomannan / Dyah Hesti Wardhani, Andri Cahyo Kumoro, Azafilmi Hakiim, Nita Aryanti, Heri Cahyono // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 384–390.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46484-
dc.description.abstractВивчено процес очищення глюкоманнана гідролізом крохмалю – основного забруднювача. Встановлено, що гідролізом усувається 88,7% крохмалю. Одержано най- вищий вміст глюкоманнану 73,35 %. Проведено порівняльні до- слідження ІЧ-спектрів дослідженого і комерційного глюко- маннана. За допомогою моделі Міхаеліса-Ментена описано кінетику ензиматичного гідролізу.
dc.description.abstractPurification of glucomannan by hydrolising starch – the main contaminant – was studied. Hydrolysis removed 88.7 % of starch. The highest glucomannan сontent was found to be 73.35 %. The sample showed the comparable infrared spectra to those of the commercial glucomannan. The kinetics of enzymatic hydrolysis was evaluated using the Michaelis-Menten model.
dc.format.extent384-390
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (13), 2019
dc.relation.urihttps://doi.org/10.14393/BJ-v35nla2019-41766
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2014.06.019
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2010.11.021
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2011.10.053
dc.relation.urihttps://doi.org/10.1016/j.foodchem.2014.02.093
dc.relation.urihttps://doi.org/10.1016/j.cofs.2015.12.002
dc.relation.urihttps://doi.org/10.1089/ind.2016.0011
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2012.06.039
dc.relation.urihttps://doi.org/10.1016/S0008-6215(02)00107-6
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2013.06.002
dc.relation.urihttps://doi.org/10.1016/j.foodhyd.2015.09.018
dc.relation.urihttps://doi.org/10.1016/j.foodhyd.2015.02.036
dc.relation.urihttps://doi.org/10.1016/j.enzmictec.2005.10.012
dc.relation.urihttps://doi.org/10.1016/j.lwt.2014.05.034
dc.relation.urihttps://doi.org/10.1016/j.indcrop.2013.10.025
dc.relation.urihttps://doi.org/10.1016/j.fuel.2008.12.019
dc.relation.urihttps://doi.org/10.1016/j.jfoodeng.2015.12.010
dc.relation.urihttps://doi.org/10.1002/star.19920441106
dc.subjectα-амілаза
dc.subjectAmorphophallus oncophyllus
dc.subjectглюкоманнан
dc.subjectгідроліз
dc.subjectочищення
dc.subjectкрохмаль
dc.subjectα-amylase
dc.subjectAmorphophallus oncophyllus
dc.subjectglucomannan
dc.subjecthydrolysis
dc.subjectpurification
dc.subjectstarch
dc.titleKinetic Modeling Studies of Enzymatic Purification of Glucomannan
dc.title.alternativeКінетичні модельні дослідження ензиматичного очищення глюкоманнана
dc.typeArticle
dc.rights.holder© Національний університет „Львівська політехніка“, 2019
dc.rights.holder© Wardhani D., Kumoro A., Hakiim A., Aryanti N., Cahyono H., 2019
dc.contributor.affiliationUniversity of Diponegoro
dc.format.pages7
dc.identifier.citationenKinetic Modeling Studies of Enzymatic Purification of Glucomannan / Dyah Hesti Wardhani, Andri Cahyo Kumoro, Azafilmi Hakiim, Nita Aryanti, Heri Cahyono // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 13. — No 3. — P. 384–390.
dc.relation.references1. Wardhani D., Vazquez J., Ramdani D., et al.: Biosci. J., 2019, 35, 277. https://doi.org/10.14393/BJ-v35nla2019-41766.
dc.relation.references2. Harmayani E., Aprilia V., Marsono Y.: Carbohydr. Polym., 2014, 112, 475. https://doi.org/10.1016/j.carbpol.2014.06.019
dc.relation.references3. An N., Thien D., Dong N. et al.: Carbohydr. Polym., 2011, 84, 64. https://doi.org/10.1016/j.carbpol.2010.11.021
dc.relation.references4. ChuaM., Baldwin T., Hocking T., Chan K.: Carbohydr. Polym., 2012, 87, 2202. https://doi.org/10.1016/j.carbpol.2011.10.053
dc.relation.references5. Hakiim A..:MSc Thesis, University of Diponegoro, Indonesia 2015.
dc.relation.references6. Ohashi S., Shelso G., Moirano A., Drinkwater W.: Pat. US 6162906A, Publ. Dec. 19, 2000.
dc.relation.references7. Xu W., Wang S., Ye T. et al.: Food Chem., 2014, 158, 171. https://doi.org/10.1016/j.foodchem.2014.02.093
dc.relation.references8. Patel A., Singhania R., Pandey A.: Curr. Opin. Food Sci., 2016, 7, 64. https://doi.org/10.1016/j.cofs.2015.12.002
dc.relation.references9. Vincent S., Diane S., Lori G. et al.: Ind. Biotechnol., 2016, 12, 295. https://doi.org/10.1089/ind.2016.0011
dc.relation.references10. AOAC 2005. Official of Analysis of the Association of Official Analytical Chemistry. Washington: AOAC Inc.
dc.relation.references11. Sadasivam S., Manickam A.: Biochemical Methods, 3rd edn. New Age International Pvt Ltd Publishers. New Delhi 2008.
dc.relation.references12. Muntean E.: Bulletin UASVM Agricult., 2011, 68, 344.
dc.relation.references13. Simsek S., El S.: Carbohydr. Polym., 2012, 90, 1204. https://doi.org/10.1016/j.carbpol.2012.06.039
dc.relation.references14. Yook C., Robyt J.: Carbohydr. Res., 2002, 337, 1113. https://doi.org/10.1016/S0008-6215(02)00107-6
dc.relation.references15. Kolusheva T., Marinova A.: J. Univ. Chem. Technol. Metall., 2007, 42, 93.
dc.relation.references16. Hera E., GomezM., Rosell C.: Carbohydr. Polym., 2013, 98, 421. https://doi.org/10.1016/j.carbpol.2013.06.002
dc.relation.references17. Zhang H., Yin L., Zheng Y., Shen J.: Food Hydrocolloid., 2016, 54, 23. https://doi.org/10.1016/j.foodhyd.2015.09.018
dc.relation.references18. Zheng Y., Zhang H., Yao C. et al.: Food Hydrocolloid., 2015, 48, 312. https://doi.org/10.1016/j.foodhyd.2015.02.036
dc.relation.references19. Nurjanah Z.: BSc thesis, Bogor Agricultural Institute, Indonesia 2010.
dc.relation.references20. Lopez C., Torrado A., Fucinos P. et al.: Enzyme Microb. Technol. 2006, 39, 252. https://doi.org/10.1016/j.enzmictec.2005.10.012
dc.relation.references21. Rodriguez S., Bernik D.: LWT-Food Sci. Technol., 2014, 59, 635. https://doi.org/10.1016/j.lwt.2014.05.034
dc.relation.references22. Khawla B., SamehM., Imen G. et al.: Ind. Crops Prod., 2014, 52,144. https://doi.org/10.1016/j.indcrop.2013.10.025
dc.relation.references23. Nikolic´ S., Mojovic´ L., RakinM., Pejin D.: Fuel, 2011, 88, 1602. https://doi.org/10.1016/j.fuel.2008.12.019
dc.relation.references24. Wu J., Zhong Q.: J. Food Eng., 2016, 175, 104. https://doi.org/10.1016/j.jfoodeng.2015.12.010
dc.relation.references25. Mulyono E.: Centre of Research and Development of Agricultural Post Harvest. Indonesia: Program of application research intensive, 2010.
dc.relation.references26. Widjanarko S., Nugroho A., Estiasih T.: Afr. J. Food Sci., 2011, 5, 12.
dc.relation.references27. Franco C., Ciacco C.: Starch, 1992, 44, 422. https://doi.org/10.1002/star.19920441106
dc.relation.referencesen1. Wardhani D., Vazquez J., Ramdani D., et al., Biosci. J., 2019, 35, 277. https://doi.org/10.14393/BJ-v35nla2019-41766.
dc.relation.referencesen2. Harmayani E., Aprilia V., Marsono Y., Carbohydr. Polym., 2014, 112, 475. https://doi.org/10.1016/j.carbpol.2014.06.019
dc.relation.referencesen3. An N., Thien D., Dong N. et al., Carbohydr. Polym., 2011, 84, 64. https://doi.org/10.1016/j.carbpol.2010.11.021
dc.relation.referencesen4. ChuaM., Baldwin T., Hocking T., Chan K., Carbohydr. Polym., 2012, 87, 2202. https://doi.org/10.1016/j.carbpol.2011.10.053
dc.relation.referencesen5. Hakiim A..:MSc Thesis, University of Diponegoro, Indonesia 2015.
dc.relation.referencesen6. Ohashi S., Shelso G., Moirano A., Drinkwater W., Pat. US 6162906A, Publ. Dec. 19, 2000.
dc.relation.referencesen7. Xu W., Wang S., Ye T. et al., Food Chem., 2014, 158, 171. https://doi.org/10.1016/j.foodchem.2014.02.093
dc.relation.referencesen8. Patel A., Singhania R., Pandey A., Curr. Opin. Food Sci., 2016, 7, 64. https://doi.org/10.1016/j.cofs.2015.12.002
dc.relation.referencesen9. Vincent S., Diane S., Lori G. et al., Ind. Biotechnol., 2016, 12, 295. https://doi.org/10.1089/ind.2016.0011
dc.relation.referencesen10. AOAC 2005. Official of Analysis of the Association of Official Analytical Chemistry. Washington: AOAC Inc.
dc.relation.referencesen11. Sadasivam S., Manickam A., Biochemical Methods, 3rd edn. New Age International Pvt Ltd Publishers. New Delhi 2008.
dc.relation.referencesen12. Muntean E., Bulletin UASVM Agricult., 2011, 68, 344.
dc.relation.referencesen13. Simsek S., El S., Carbohydr. Polym., 2012, 90, 1204. https://doi.org/10.1016/j.carbpol.2012.06.039
dc.relation.referencesen14. Yook C., Robyt J., Carbohydr. Res., 2002, 337, 1113. https://doi.org/10.1016/S0008-6215(02)00107-6
dc.relation.referencesen15. Kolusheva T., Marinova A., J. Univ. Chem. Technol. Metall., 2007, 42, 93.
dc.relation.referencesen16. Hera E., GomezM., Rosell C., Carbohydr. Polym., 2013, 98, 421. https://doi.org/10.1016/j.carbpol.2013.06.002
dc.relation.referencesen17. Zhang H., Yin L., Zheng Y., Shen J., Food Hydrocolloid., 2016, 54, 23. https://doi.org/10.1016/j.foodhyd.2015.09.018
dc.relation.referencesen18. Zheng Y., Zhang H., Yao C. et al., Food Hydrocolloid., 2015, 48, 312. https://doi.org/10.1016/j.foodhyd.2015.02.036
dc.relation.referencesen19. Nurjanah Z., BSc thesis, Bogor Agricultural Institute, Indonesia 2010.
dc.relation.referencesen20. Lopez C., Torrado A., Fucinos P. et al., Enzyme Microb. Technol. 2006, 39, 252. https://doi.org/10.1016/j.enzmictec.2005.10.012
dc.relation.referencesen21. Rodriguez S., Bernik D., LWT-Food Sci. Technol., 2014, 59, 635. https://doi.org/10.1016/j.lwt.2014.05.034
dc.relation.referencesen22. Khawla B., SamehM., Imen G. et al., Ind. Crops Prod., 2014, 52,144. https://doi.org/10.1016/j.indcrop.2013.10.025
dc.relation.referencesen23. Nikolic´ S., Mojovic´ L., RakinM., Pejin D., Fuel, 2011, 88, 1602. https://doi.org/10.1016/j.fuel.2008.12.019
dc.relation.referencesen24. Wu J., Zhong Q., J. Food Eng., 2016, 175, 104. https://doi.org/10.1016/j.jfoodeng.2015.12.010
dc.relation.referencesen25. Mulyono E., Centre of Research and Development of Agricultural Post Harvest. Indonesia: Program of application research intensive, 2010.
dc.relation.referencesen26. Widjanarko S., Nugroho A., Estiasih T., Afr. J. Food Sci., 2011, 5, 12.
dc.relation.referencesen27. Franco C., Ciacco C., Starch, 1992, 44, 422. https://doi.org/10.1002/star.19920441106
dc.citation.issue3
dc.citation.spage384
dc.citation.epage390
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
Appears in Collections:Chemistry & Chemical Technology. – 2019. – Vol. 13, No. 3

Files in This Item:
File Description SizeFormat 
2019v13n3_Wardhani_D_H-Kinetic_Modeling_Studies_384-390.pdf738.32 kBAdobe PDFView/Open
2019v13n3_Wardhani_D_H-Kinetic_Modeling_Studies_384-390__COVER.png541.2 kBimage/pngView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.